Hypervelocity Flow Simulation

1994 ◽  
Vol 47 (6S) ◽  
pp. S14-S19
Author(s):  
Hans Hornung ◽  
Chihyung Wen ◽  
Patrick Germain

Many of the flow problems associated with flight vehicles designed to reach or return from space can not be solved computationally. It is essential to address them by experiment, in particular, by ground simulation of the flow. The requirements and most successful simulation techniques are described, and their important limitations are discussed. Two selected examples are then presented from the free-piston reflected shock tunnel T5 at Caltech: Dissociating flow over spheres and transition from laminar to turbulent flow on a slender cone.

2022 ◽  
Author(s):  
Kyle P. Lynch ◽  
Thomas Grasser ◽  
Paul Farias ◽  
Kyle Daniel ◽  
Russell Spillers ◽  
...  

Author(s):  
Joel H. Ferziger

Over a decade ago, the author (Ferziger, 1983) wrote a review of the then state-of-the-art in direct numerical simulation (DNS) and large eddy simulation (LES). Shortly thereafter, a second review was written by Rogallo and Moin (1984). In those relatively early days of turbulent flow simulation, it was possible to write comprehensive reviews of what had been accomplished. Since then, the widespread availability of supercomputers has led to an explosion in this field so, although the subject is undoubtedly overdue for another review, it is not clear that the task can be accomplished in anything less than a monograph. The author therefore apologizes in advance for omissions (there must be many) and for any bias toward the accomplishments of people on the west coast of North America. In the earlier review, the author listed six approaches to the prediction of turbulent flow behavior. The list included: correlations, integral methods, single-point Reynolds-averaged closures, two-point closures, large eddy simulation and direct numerical simulation. Even then the distinction between these methods was not always clear; if anything, it is less clear today. It was possible in the earlier review to give a relatively complete overview of what had been accomplished with simulation methods. Since then, simulation techniques have been applied to an ever expanding range of flows so a thorough review of simulation results is no longer possible in the space available here. Simulation techniques have become well established as a means of studying turbulent flows and the results of simulations are best presented in combination with experimental data for the same flow. There is also a danger that the success of simulation methods will lead to attempts to apply them too soon to flows which the models and techniques are not ready to handle. To some extent, this is already happening. Direct numerical simulation (DNS) is a method in which all of the scales of motion of a turbulent flow are computed. A DNS must include everything from the large energy-containing or integral scales to the dissipative scales; the latter is usually taken to be the viscous or Kolmogoroff scales.


2021 ◽  
Vol 62 (11) ◽  
Author(s):  
Peter Collen ◽  
Luke J. Doherty ◽  
Suria D. Subiah ◽  
Tamara Sopek ◽  
Ingo Jahn ◽  
...  

Abstract The T6 Stalker Tunnel is a multi-mode, high-enthalpy, transient ground test facility. It is the first of its type in the UK. The facility combines the original free-piston driver from the T3 Shock Tunnel with modified barrels from the Oxford Gun Tunnel. Depending on test requirements, it can operate as a shock tube, reflected shock tunnel or expansion tube. Commissioning tests of the free-piston driver are discussed, including the development of four baseline driver conditions using piston masses of either 36 kg or 89 kg. Experimental data are presented for each operating mode, with comparison made to numerical simulations. In general, high-quality test flows are observed. The calculated enthalpy range of the experimental conditions achieved varies from $$2.7\hbox { MJ kg}^{-1}$$ 2.7 MJ kg - 1 to $$115.0\hbox { MJ kg}^{-1}$$ 115.0 MJ kg - 1 . Graphical abstract


2006 ◽  
Vol 110 (1103) ◽  
pp. 21-39 ◽  
Author(s):  
R. J. Stalker

AbstractThe development of new methods of producing hypersonic wind-tunnel flows at increasing velocities during the last few decades is reviewed with attention to airbreathing propulsion, hypervelocity aerodynamics and superorbital aerodynamics. The role of chemical reactions in these flows leads to use of a binary scaling simulation parameter, which can be related to the Reynolds number, and which demands that smaller wind tunnels require higher reservoir pressure levels for simulation of flight phenomena. The use of combustion heated vitiated wind tunnels for propulsive research is discussed, as well as the use of reflected shock tunnels for the same purpose. A flight experiment validating shock-tunnel results is described, and relevant developments in shock tunnel instrumentation are outlined. The use of shock tunnels for hypervelocity testing is reviewed, noting the role of driver gas contamination in determining test time, and presenting examples of air dissociation effects on model flows. Extending the hypervelocity testing range into the superorbital regime with useful test times is seen to be possible by use of expansion tube/tunnels with a free piston driver.


2021 ◽  
Author(s):  
Nick J. Parziale ◽  
Muhammad A. Mustafa ◽  
David Shekhtman ◽  
Joanna M. Austin ◽  
Wesley M. Yu
Keyword(s):  

This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.


2014 ◽  
Vol 85 (4) ◽  
pp. 045112 ◽  
Author(s):  
H. Tanno ◽  
T. Komuro ◽  
K. Sato ◽  
K. Fujita ◽  
S. J. Laurence

Sign in / Sign up

Export Citation Format

Share Document