State Variable Form of Unsteady Airfoil Aerodynamics with Vortex Shedding

2022 ◽  
Author(s):  
Yi Tsung Lee ◽  
Arun Vishnu Suresh Babu ◽  
Matthew Bryant ◽  
Ashok Gopalarathnam
2020 ◽  
Vol 64 (1-4) ◽  
pp. 431-438
Author(s):  
Jian Liu ◽  
Lihui Wang ◽  
Zhengqi Tian

The nonlinearity of the electric vehicle DC charging equipment and the complexity of the charging environment lead to the complex and changeable DC charging signal of the electric vehicle. It is urgent to study the distortion signal recognition method suitable for the electric vehicle DC charging. Focusing on the characteristics of fundamental and ripple in DC charging signal, the Kalman filter algorithm is used to establish the matrix model, and the state variable method is introduced into the filter algorithm to track the parameter state, and the amplitude and phase of the fundamental waves and each secondary ripple are identified; In view of the time-varying characteristics of the unsteady and abrupt signal in the DC charging signal, the stratification and threshold parameters of the wavelet transform are corrected, and a multi-resolution method is established to identify and separate the unsteady and abrupt signals. Identification method of DC charging distortion signal of electric vehicle based on Kalman/modified wavelet transform is used to decompose and identify the signal characteristics of the whole charging process. Experiment results demonstrate that the algorithm can accurately identify ripple, sudden change and unsteady wave during charging. It has higher signal to noise ratio and lower mean root mean square error.


2015 ◽  
Vol 9 (3) ◽  
pp. 2487-2502 ◽  
Author(s):  
Igor V. Lebed

Scenario of appearance and development of instability in problem of a flow around a solid sphere at rest is discussed. The scenario was created by solutions to the multimoment hydrodynamics equations, which were applied to investigate the unstable phenomena. These solutions allow interpreting Stokes flow, periodic pulsations of the recirculating zone in the wake behind the sphere, the phenomenon of vortex shedding observed experimentally. In accordance with the scenario, system loses its stability when entropy outflow through surface confining the system cannot be compensated by entropy produced within the system. The system does not find a new stable position after losing its stability, that is, the system remains further unstable. As Reynolds number grows, one unstable flow regime is replaced by another. The replacement is governed tendency of the system to discover fastest path to depart from the state of statistical equilibrium. This striving, however, does not lead the system to disintegration. Periodically, reverse solutions to the multimoment hydrodynamics equations change the nature of evolution and guide the unstable system in a highly unlikely direction. In case of unstable system, unlikely path meets the direction of approaching the state of statistical equilibrium. Such behavior of the system contradicts the scenario created by solutions to the classic hydrodynamics equations. Unstable solutions to the classic hydrodynamics equations are not fairly prolonged along time to interpret experiment. Stable solutions satisfactorily reproduce all observed stable medium states. As Reynolds number grows one stable solution is replaced by another. They are, however, incapable of reproducing any of unstable regimes recorded experimentally. In particular, stable solutions to the classic hydrodynamics equations cannot put anything in correspondence to any of observed vortex shedding modes. In accordance with our interpretation, the reason for this isthe classic hydrodynamics equations themselves.


AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 787-793
Author(s):  
Wei Ning ◽  
Li He

Sign in / Sign up

Export Citation Format

Share Document