Low-Order Modeling of Unsteady Flow Around Airfoils with Rounded Trailing Edges

2022 ◽  
Author(s):  
Yi Tsung Lee ◽  
Kiran Kumar Ramesh ◽  
Ashok Gopalarathnam
1977 ◽  
Vol 83 (3) ◽  
pp. 569-604 ◽  
Author(s):  
M. E. Goldstein ◽  
Willis Braun ◽  
J. J. Adamczyk

Linearized theory is used to study the unsteady flow in a supersonic cascade with in-passage shock waves. We use the Wiener–Hopf technique to obtain a closed-form analytical solution for the supersonic region. To obtain a solution for the rotational flow in the subsonic region we must solve an infinite set of linear algebraic equations. The analysis shows that it is possible to correlate quantitatively the oscillatory shock motion with the Kutta condition at the trailing edges of the blades. This feature allows us to account for the effect of shock motion on the stability of the cascade.Unlike the theory for a completely supersonic flow, the present study predicts the occurrence of supersonic bending flutter. It therefore provides a possible explanation for the bending flutter that has recently been detected in aircraft-engine compressors at higher blade loadings.


2021 ◽  
Author(s):  
Yi Tsung Lee ◽  
Kiran Ramesh ◽  
Ashok Gopalarathnam
Keyword(s):  

AIAA Journal ◽  
2019 ◽  
Vol 57 (1) ◽  
pp. 191-207 ◽  
Author(s):  
Shreyas Narsipur ◽  
Ashok Gopalarathnam ◽  
Jack R. Edwards

1974 ◽  
Vol 22 ◽  
pp. 193-203
Author(s):  
L̆ubor Kresák

AbstractStructural effects of the resonance with the mean motion of Jupiter on the system of short-period comets are discussed. The distribution of mean motions, determined from sets of consecutive perihelion passages of all known periodic comets, reveals a number of gaps associated with low-order resonance; most pronounced are those corresponding to the simplest commensurabilities of 5/2, 2/1, 5/3, 3/2, 1/1 and 1/2. The formation of the gaps is explained by a compound effect of five possible types of behaviour of the comets set into an approximate resonance, ranging from quick passages through the gap to temporary librations avoiding closer approaches to Jupiter. In addition to the comets of almost asteroidal appearance, librating with small amplitudes around the lower resonance ratios (Marsden, 1970b), there is an interesting group of faint diffuse comets librating in characteristic periods of about 200 years, with large amplitudes of about±8% in μ and almost±180° in σ, around the 2/1 resonance gap. This transient type of motion appears to be nearly as frequent as a circulating motion with period of revolution of less than one half that of Jupiter. The temporary members of this group are characteristic not only by their appearance but also by rather peculiar discovery conditions.


2013 ◽  
Vol 60 (3) ◽  
pp. 319-333
Author(s):  
Rafał Hein ◽  
Cezary Orlikowski

Abstract In the paper, the authors describe the method of reduction of a model of rotor system. The proposed approach makes it possible to obtain a low order model including e.g. non-proportional damping or the gyroscopic effect. This method is illustrated using an example of a rotor system. First, a model of the system is built without gyroscopic and damping effects by using the rigid finite element method. Next, this model is reduced. Finally, two identical, low order, reduced models in two perpendicular planes are coupled together by means of gyroscopic and damping interaction to form one model of the system. Thus a hybrid model is obtained. The advantage of the presented method is that the number of gyroscopic and damping interactions does not affect the model range


Sign in / Sign up

Export Citation Format

Share Document