scholarly journals Development of Hardware in the Loop Real-Time Control Techniques for Hybrid Power Systems Involving Distributed Demands and Sustainable Energy Sources

2014 ◽  
Author(s):  
Ali Mazloomzadeh
Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1948 ◽  
Author(s):  
Fu-Cheng Wang ◽  
Yi-Shao Hsiao ◽  
Yi-Zhe Yang

This paper discusses the optimization of hybrid power systems, which consist of solar cells, wind turbines, fuel cells, hydrogen electrolysis, chemical hydrogen generation, and batteries. Because hybrid power systems have multiple energy sources and utilize different types of storage, we first developed a general hybrid power model using the Matlab/SimPowerSystemTM, and then tuned model parameters based on the experimental results. This model was subsequently applied to predict the responses of four different hybrid power systems for three typical loads, without conducting individual experiments. Furthermore, cost and reliability indexes were defined to evaluate system performance and to derive optimal system layouts. Finally, the impacts of hydrogen costs on system optimization was discussed. In the future, the developed method could be applied to design customized hybrid power systems.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3537 ◽  
Author(s):  
Nicu Bizon ◽  
Mihai Oproescu

Besides three different real-time optimization strategies analyzed for the Renewable/ Fuel Cell Hybrid Power Systems (REW/FC-HPS) based on load-following (LFW) control, a short but critical assessment of the Real-Time Optimization (RTO) strategies is presented in this paper. The advantage of power flow balance on the DC bus through the FC net power generated using the LFW control instead of using the batteries’ stack is highlighted in this study. As LFW control consequence, the battery operates in charge-sustained mode and many advantages can be exploited in practice such as: reducing the size of the battery and maintenance cost, canceling the monitoring condition of the battery state-of-charge etc. The optimization of three FC-HPSs topologies based on appropriate RTO strategy is performed here using indicators such as fuel economy, fuel consumption efficiency, and FC electrical efficiency. The challenging task to optimize operation of the FC-HPS under unknown profile of the load demand is approached using an optimization function based on linear mix of the FC net power and the fuel consumption through the weighting coefficients knet and kfuel. If optimum values are chosen, then a RTO switching strategy can improve even further the fuel economy over the entire range of load.


2005 ◽  
Vol 93 (5) ◽  
pp. 965-979 ◽  
Author(s):  
K. Tomsovic ◽  
D.E. Bakken ◽  
V. Venkatasubramanian ◽  
A. Bose

Author(s):  
A.J. Gonzalez ◽  
R.A. Morris ◽  
F.D. McKenzie ◽  
D.J. Carreira ◽  
B.K. Gann

Sign in / Sign up

Export Citation Format

Share Document