scholarly journals Low Temperature Rheological Behavior of Umbarka Waxy Crude and Influence of Flow Improver

1997 ◽  
Vol 52 (3) ◽  
pp. 369-379 ◽  
Author(s):  
I. M. El-Gamal ◽  
E. A. M. Gad
2012 ◽  
Vol 524-527 ◽  
pp. 1844-1847 ◽  
Author(s):  
Hong Zhang ◽  
Wen Fa Xiao

The situation of low temperature crude oil pipeline carrying is universal. The rapid developing of pipe line supposes higher asking on new carrying technology. The problem of long distance carrying at normal temperature of high waxy crude oil is impel to resolve and its potential social economic profit is obvious. As the pipeline is designed at high production period of field so there must have low carrying situation at beginning and ending time. At the situation the high waxy crude oil and high pour point crude oil will face on great resistance and blockage problem. Further more the pipeline has to make great energy expense on high temperature carrying. So take new carrying technology to realize atmosphere temperature carrying is crucial of resolving low temperature carrying. The method of adding chemical pour point depressant(PPD)/flow improver additives (FIA) into crude oil directly was widely used at present. The progress of the additives and its study methods was summarized in the paper and supply some reference for the technology of PPD/FIA.


Author(s):  
Ogunkunle Temitope Fred ◽  
Abraham Victoria Damilola ◽  
Adebisi Abimbola Ashonibare ◽  
Rukayat Adenike ◽  
Tega-oboh Elohor Sylvia

Author(s):  
Jiaqiang Jing ◽  
Zhongyuan Guan ◽  
Xiaoqin Xiong ◽  
Hua Tian ◽  
Liwen Tan

It has been proved that the flow improver makes the transportation of waxy crude oils in pipeline much more economic and safe, but so far an universal flow improver for various waxy crude oils has not been found because of inadequately understanding the action mechanism of the flow improvers. Therefore it is necessary for the mechanism to be studied further. A series of synthetic waxy oils (SWOs) with or without flow improver GY1, a long chain alkyl acrylate polymer based chemical, are prepared from 25# transformer oil, 50#, 60# (macrocrystalline) and 80# (microcrystalline) wax, single or mixed, and in some cases 60# road asphalt by mixing the ingredients at 100°C for 1 hour. Characteristic temperatures, viscosity-temperature properties and rheological behaviors are studied by using rheological techniques, and microstructures of wax crystals grown from SWOs at 20 °C are analyzed by using a polarization microscopy. Some abnormal viscosity-temperature properties of SWOs are found, which mainly results from wax crystallization and network structure formed by wax crystals. The mechanisms involved in the structure formation and fluidity improved by chemical for SWOs are discussed here. Studies show that the structure formation is followed by the formation of crystal nuclei, growth and interconnection or bridging of the wax crystal particles, which is closely relevant to wax molecular dimension and content, crystalline particle size, shape, concentration and surface characteristics. GY1 added into the SWOs lowers their cloud points by 0–2.0 °C and enhances the amounts of wax precipitated at 30 °C by 10–35wt%, which might not be involved in the mechanisms of the fluidity improving under this study. The extent of pour point depression by GY1 increases with increasing the wax molecular size and decreasing the wax content in the SWOs. As long as the SWO treated by GY1 has a greater yield stress reduction at the temperature closed to its pour point, its viscosity and pour point reduction will be more obvious. The common shortcut of pour point depression and viscosity reduction is to inhibit or desintegrate the formation of paraffin crystal network. The mechanisms involved in fluidity improvement of waxy crude oils by chemicals include modifying surface properties of waxy crystals and promoting crystal particle growth with higher symmetry.


2007 ◽  
Vol 280-283 ◽  
pp. 1041-1044
Author(s):  
Yong Huang ◽  
Li Ming Zhang ◽  
Hai Feng Li ◽  
Tian Ma

The effects of solid volume fraction (SVF) on the gelation of alumina suspensions for gelcasting, debonding and sintering of the green body were studied. It was found that with SVF rising, the gelation of alumina suspension delayed; and the strength of green body decreased. On the other hand, high SVF resulted in that polymerized acrylamide split at a relative low temperature. These phenomena manifest that the fast polymerization of monomers in high SVF alumina suspension was inhibited, and the flexibility of the gelcasting was improved. However, Excessive solid volume fraction was prone to a bad rheological behavior of alumina suspension, and deteriorated the microstructure and properties of sintered body.


2021 ◽  
Vol 11 (2) ◽  
pp. 711-724
Author(s):  
William Iheanyi Eke ◽  
Sampson Kofi Kyei ◽  
Joseph Ajienka ◽  
Onyewuchi Akaranta

AbstractWax formation creates flow assurance problems in the production and transportation of waxy crude oil. Flow improvers are added to waxy crude in order to reduce handling cost. Bio-based flow improvers derived from cheap renewable resources are attractive as cost-effective, eco-friendly alternatives to the conventional additives. Natural cashew nut shell liquid extracted from waste biomass (Anacardium occidentale shells) was derivatized and applied as flow improver for waxy crude oil. Effect of the additive on wax formation in crude oil was studied by cross-polarized microscopy, while the change in oil flow properties was evaluated using a rotational coaxial cylinder viscometer. Micrographs of the waxy crude were processed and analyzed with image J software. The microscopic properties of the wax crystals were characterized using Feret diameter, crystal area, aspect ratio, circularity, solidity and boundary fractal dimension. The pour point of doped crude oil was depressed by − 18 °C and the wax area fraction reduced by 40% due to wax inhibitive effect of the additive. The presence of the additive resulted in evolution of smaller, rounder and more regular wax crystals with smoother and more even surfaces indicated by reduction in the Feret diameter, aspect ratio and boundary fractal dimension of wax crystals in doped oil, and an increase in crystal circularity and solidity. The shear stress and viscosity of doped oil were reduced by 86.8% and 85.0%, respectively. The flow improvement effect of the CNSL derivative is linked to its effect on morphology and microstructure of wax crystals in the crude oil.


Sign in / Sign up

Export Citation Format

Share Document