feret diameter
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 6)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 14 (1) ◽  
pp. 20-25
Author(s):  
Meri Hamdini ◽  
Yuant Tiandho

Until now, the world is still facing the spread of the SARS-CoV-2 virus that causes COVID-19. This virus can be transmitted from human to human through droplets, so more vigilance is needed to avoid contracting this virus. One of the steps to minimize the spread of Covid-19 is to wear a face mask. In practice, most people prefer to use cloth masks than disposable medical masks because they are cheap and reusable. Cloth pore size influences the filtering ability of the cloth masks. Therefore, it is necessary to analyze the efficiencies of the cloth masks. In this study, we developed a method for measuring the pores of a cloth mask using a smartphone. In this study, we developed a method for measuring the pores of a cloth mask using a smartphone. We used the camera zoom application on a smartphone and analyzed the image using image processing software, ImageJ. We appliedHuang's algorithm to adjust the image binarization threshold then calculated the Feret diameter as the pore size of the mask. According to the analysis, the pore size ranged from 0.133 to 0.232 mm, and the efficiency ranged from 77.4 to 82.6%.


2021 ◽  
Vol 4 (1) ◽  
pp. 26
Author(s):  
Tamara Jurina ◽  
Ivana Čulo ◽  
Maja Benković ◽  
Jasenka Gajdoš Kljusurić ◽  
Davor Valinger ◽  
...  

In this work, teardrop micromixer and swirl micromixer were used for preparation of oil-in-water (O/W) emulsions with Tween 20 and PEG 2000 as emulsifiers (concentrations: 2% and 4%) at different total flow rates (20–280 µL/min). Stability of the prepared O/W emulsions was evaluated based on the droplet size of the dispersed phase. For determination of the droplet size, the average Feret diameter was used. Furthermore, near infrared (NIR) spectra of all prepared samples were collected. Obtained results showed that the change in the droplet size followed the same trend for both micromixers used in the experiment. At higher total flow rates, emulsification resulted in smaller values of the average Feret diameter. Values of the average Feret diameter were higher for emulsions prepared in the swirl micromixer, compared to the teardrop micromixer. Artificial Neural Network (ANNs) models, based on the recorded NIR spectra of emulsions, were developed to predict the droplet size of the dispersed phase. The obtained ANN models have high values of R2 for training, test, and validation, with small error values and show that NIR spectroscopy, in combination with ANNs, could be efficiently used for evaluation of the stability of oil-in-water emulsions.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Daryl D. Cruz ◽  
Dennis Denis ◽  
Elizabeth Arellano ◽  
Carlos N. Ibarra-Cerdeña

Abstract Background Spots and coloring patterns evaluated quantitatively can be used to discriminate and identify possible cryptic species. Species included in the Triatoma dimidiata (Reduviidae: Triatominae) complex are major disease vectors of Chagas disease. Phylogenetic studies have defined three haplogroups for Mexico and part of Central America. We report here our evaluation of the possibility of correctly discriminating these three T. dimidiata haplogroups using the pattern of the dorsal spots. Methods Digital images of the dorsal region of individuals from the three haplogroups were used. Image processing was used to extract primary and secondary variables characterizing the dorsal spot pattern. Statistical analysis of the variables included descriptive statistics, non-parametric Kruskal–Wallis tests, discriminant function analysis (DFA) and a neural classification network. Results A distinctive spot pattern was found for each haplogroup. The most differentiated pattern was presented by haplogroup 2, which was characterized by its notably larger central spots. Haplogroups 1 and 3 were more similar to each other, but there were consistent differences in the shape and orientation of the spots. Significant differences were found among haplogroups in almost all of the variables analyzed, with the largest differences seen for relative spot area, mean relative area of central spots, central spots Feret diameter and lateral spots Feret diameter and aspect ratio. Both the DFA and the neural network had correct discrimination values of > 90%. Conclusions Based on the results of this analysis, we conclude that the spot pattern can be reliably used to discriminate among the three haplogroups of T. dimidiata in Mexico, and possibly among triatomine species.


2021 ◽  
Vol 11 (2) ◽  
pp. 711-724
Author(s):  
William Iheanyi Eke ◽  
Sampson Kofi Kyei ◽  
Joseph Ajienka ◽  
Onyewuchi Akaranta

AbstractWax formation creates flow assurance problems in the production and transportation of waxy crude oil. Flow improvers are added to waxy crude in order to reduce handling cost. Bio-based flow improvers derived from cheap renewable resources are attractive as cost-effective, eco-friendly alternatives to the conventional additives. Natural cashew nut shell liquid extracted from waste biomass (Anacardium occidentale shells) was derivatized and applied as flow improver for waxy crude oil. Effect of the additive on wax formation in crude oil was studied by cross-polarized microscopy, while the change in oil flow properties was evaluated using a rotational coaxial cylinder viscometer. Micrographs of the waxy crude were processed and analyzed with image J software. The microscopic properties of the wax crystals were characterized using Feret diameter, crystal area, aspect ratio, circularity, solidity and boundary fractal dimension. The pour point of doped crude oil was depressed by − 18 °C and the wax area fraction reduced by 40% due to wax inhibitive effect of the additive. The presence of the additive resulted in evolution of smaller, rounder and more regular wax crystals with smoother and more even surfaces indicated by reduction in the Feret diameter, aspect ratio and boundary fractal dimension of wax crystals in doped oil, and an increase in crystal circularity and solidity. The shear stress and viscosity of doped oil were reduced by 86.8% and 85.0%, respectively. The flow improvement effect of the CNSL derivative is linked to its effect on morphology and microstructure of wax crystals in the crude oil.


2019 ◽  
Author(s):  
Paige C Arneson ◽  
Kelly A Hogan ◽  
Alexandra M Shin ◽  
Adrienne Samani ◽  
Aminah Jatoi ◽  
...  

ABSTRACTBackgroundMuscle wasting is a debilitating co-morbidity affecting most advanced cancer patients. Alongside enhanced muscle catabolism, defects in muscle repair/regeneration contribute to cancer-associated wasting. Among the factors implicated in suppression of muscle regeneration are cytokines that interfere with myogenic signal transduction pathways. Less understood is how other cancer/wasting-associated cues, such as metabolites, contribute to muscle dysfunction. This study investigates how the metabolite succinate affects myogenesis and muscle regeneration.MethodsWe leveraged an established ectopic metabolite treatment (cell permeable dimethyl-succinate) strategy to evaluate the ability of intracellular succinate elevation to 1) affect myoblast homeostasis (proliferation, apoptosis), 2) disrupt protein dynamics and induce wasting-associated atrophy, and 3) modulate in vitro myogenesis. In vivo succinate supplementation experiments (2% succinate, 1% sucrose vehicle) were used to corroborate and extend in vitro observations. Metabolic profiling and functional metabolic studies were then performed to investigate the impact of succinate elevation on mitochondria function.ResultsWe found that in vitro succinate supplementation elevated intracellular succinate about 2-fold, and did not have an impact on proliferation or apoptosis of C2C12 myoblasts. Elevated succinate had minor effects on protein homeostasis (∼25% decrease in protein synthesis assessed by OPP staining), and no significant effect on myotube atrophy. Succinate elevation interfered with in vitro myoblast differentiation, characterized by significant decreases in late markers of myogenesis and fewer nuclei per myosin heavy chain positive structure (assessed by immunofluorescence staining). While mice orally administered succinate did not exhibit changes in overall body composition or whole muscle weights, these mice displayed smaller muscle myofiber diameters (∼6% decrease in the mean of non-linear regression curves fit to the histograms of minimum feret diameter distribution), which was exacerbated when muscle regeneration was induced with barium chloride injury. Significant decreases in the mean of non-linear regression curves fit to the histograms of minimum feret diameter distributions were observed 7 days and 28 days post injury. Elevated numbers of myogenin positive cells (3-fold increase) supportive of the differentiation defects observed in vitro were observed 28 days post injury. Metabolic profiling and functional metabolic assessment of myoblasts revealed that succinate elevation caused both widespread metabolic changes and significantly lowered maximal cellular respiration (∼35% decrease).ConclusionsThis study broadens the repertoire of wasting-associated factors that can directly modulate muscle progenitor cell function and strengthens the hypothesis that metabolic derangements are significant contributors to impaired muscle regeneration, an important aspect of cancer-associated muscle wasting.


2019 ◽  
Vol 268 ◽  
pp. 05004
Author(s):  
Cyril Benedict Lugod ◽  
Joseph Auresenia

CNT production is limited by issues regarding CNT growth and morphology. Due to this, further studies on experimental factors regarding CNT production are needed to optimize CNT production in a commercial scale. This study focuses mainly on the determination of the effects of the presence of a magnetic field during CNT synthesis in a Microwave Enhanced Plasma Chemical Vapor Deposition (MPECVD) process using a Whirlpool AVM585 conventional microwave oven. The study also determined the effects of hydrogen catalyst plasma pretreatment on CNT growth. The experiment was based on a Taguchi orthogonal array design. The effects of the experimental factors such as magnetic field strength (0, 5, and 10 mT), catalyst pretreatment time (10, 15, and 20 min), hydrogen gas flow rate (25, 50, and 75 mL/min), and microwave power (451, 570, and 740 W) on the responses such as the catalyst nanoparticle Feret diameter, CNT diameter, tortuosity, weight, and purity were investigated. Among the design factors, application of magnetic field at 10 mT improved all the responses, most notably the CNT diameter and tortuosity being reduced by 60% and 48% compared to runs with no magnetic field, respectively. Under tortuosity, magnetic field was the design factor which had the greatest effect on decreasing the tortuosity of the CNTs at around 100 times the effect measured under other design factors. Catalyst plasma pretreatment was most optimal at the highest hydrogen flow rate and microwave power setting, under the influence of the highest magnetic field strength. The effects of the factors during catalyst plasma pretreatment also resulted to improved characteristics of the CNTs during the CNT synthesis. Overall, the findings suggest that the application of a magnetic field during catalyst plasma pretreatment and the subsequent CNT synthesis results to catalyst nanoparticles and CNTs with improved properties such as lower catalyst nanoparticle Feret diameter, CNT diameter, tortuosity and higher CNT yield and purity.


Agronomy ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 296 ◽  
Author(s):  
Klaudia Goriewa-Duba ◽  
Adrian Duba ◽  
Urszula Wachowska ◽  
Marian Wiwart

Kernel images of six wheat species were subjected to shape and color analyses to determine variations in the morphometric parameters of grain. The values of kernel shape descriptors (area, perimeter, Feret diameter, minimal Feret diameter, circularity, aspect ratio, roundness, solidity) and color descriptors (H, S, I and L*a*b*) were investigated. The influence of grain colonization by endophytic fungi on the color of the seed coat was also evaluated. Polish wheat grain was characterized by the highest intraspecific variation in shape and color. Bread wheat was most homogeneous in terms of the studied shape and color descriptors. An analysis of variations in wheat lines revealed greater differences in phenotypic traits of relict wheats, which have a larger gene pool. The grain of ancient wheat species was characterized by low roundness values and relatively low solidity. Shape and color descriptors were strongly discriminating components in the studied wheat species. Their discriminatory power was determined mainly by genotype. A method that supports rapid discrimination of cereal species and admixtures of other cereals in grain batches is required to guarantee the quality and safety of grain. The results of this study indicate that digital image analysis can be effectively used for this purpose.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Annalisa Bianchera ◽  
Enrico Salomi ◽  
Matteo Pezzanera ◽  
Elisabeth Ruwet ◽  
Ruggero Bettini ◽  
...  

This paper provides an analytical characterization of chitosan scaffolds obtained by freeze-gelation toward the uptake and the controlled release of chondroitin sulphate (CS), as cartilage repair agent, under different pH conditions. Scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and liquid chromatography-UV spectrophotometry (LC-UV) techniques were exploited to obtain qualitative and quantitative descriptions of polymer and drug behaviour in the biomaterial. As for morphology, SEM analysis allowed the evaluation of scaffold porosity in terms of pore size and distribution both at the surface (Feret diameter58±19 μm) and on the cross section (Feret diameter106±51 μm). LC and ATR-FTIR evidenced a pH-dependent CS loading and release behaviour, strongly highlighting the role of electrostatic forces on chitosan/chondroitin sulphate interactions.


Sign in / Sign up

Export Citation Format

Share Document