scholarly journals New Robust Stability and Robust Performance Criterion for Linear Closed-Loop Systems with Indeterminacy of Structure and Parametric Uncertainty into Transfer Function of Object Control

2017 ◽  
Vol 15 (1) ◽  
pp. 59-69
Author(s):  
A. N. Parshukov ◽  
Author(s):  
G Gonzalez

A new type of bond designed as an adapted bond is proposed. This bond can be considered in the transition from an active bond to a bond. This approach makes it possible to know the loading effect of the controller–plant and the feedback connections. In order to determine the loading effect of the closed-loop system, the transfer function using causal paths and causal loops of the system in the physical domain is presented. However, this proposed adapted bond should be used in fault cases. Finally, some examples of bond graph models in open- and closed-loop systems are given.


2009 ◽  
Vol 3 ◽  
pp. 119 ◽  
Author(s):  
Anderson Luiz Cavalcanti

RESUMO O presente trabalho tem o objetivo de apresentar uma análise em malha fechada do controlador Generalized Predictive Control (GPC). Esta análise visa observar, com detalhes, as características deste tipo de controlador. Os detalhes apresentados são de extrema importância na análise de estabilidade robusta. Alguns resultados de simulação são apresentados. PALAVRAS-CHAVE: Controle preditivo, sistemas em malha fechada. CLOSED-LOOP ANALYSIS OF GENERALIZED PREDICTIVE CONTROL (GPC) ABSTRACT This paper presents a closed loop analysys of Generalized Predictive Control GPC. This analysis observes, in details, the features of this kind of predictive controller The details showed are very important in robust stability analysis. Simulation results are shown. KEY-WORDS: Predictive control, closed-loop systems.


1996 ◽  
Vol 118 (4) ◽  
pp. 753-756 ◽  
Author(s):  
Yongdong Zhao ◽  
Suhada Jayasuriya

Considered in this paper is the question of whether a compensator realized by the MIMO-QFT nonsequential method robustly stabilizes the entire plant family. In order to establish our results, first the classic small gain theorem for robust stability is modified to allow uncertain plant families with poles arbitrarily crossing the imaginary axis, or equivalently, plants in which the number of unstable poles does not remain fixed over all uncertainties. The conventional assumption that the number of unstable poles remain fixed over all uncertainties can be quite restrictive, especially, in the case of plants with structured uncertainties. It is shown that to assure robust stability of the closed loop, resulting from the MIMO-QFT nonsequential approach, one more requirement must be added to the procedure. The needed extra condition can be quite naturally incorporated during the execution of the nonsequential technique. As a result, the proposed condition does not significantly alter the basic MIMO-QFT nonsequential procedure.


2012 ◽  
Vol 22 (04) ◽  
pp. 1230013 ◽  
Author(s):  
PATRICK LANUSSE ◽  
ALAIN OUSTALOUP ◽  
VALERIE POMMIER-BUDINGER

Fractional complex order integrator has been used since 1991 for the design of robust control-systems. In the CRONE control methodology, it permits the parameterization of open loop transfer function which is optimized in a robustness context. Sets of fractional order integrators that lead to a given damping factor have also been used to build iso-damping contours on the Nichols plane. These iso-damping contours can also be used to optimize the third CRONE generation open loop transfer function. However, these contours have been built using nonband-limited integrators, even if such integrators reveal to lead to unstable closed loop systems. One objective of this paper is to show how the band-limitation modifies the left half-plane dominant poles of the closed loop system and removes the right half-plane ones. Also presented are how to obtain a fractional order open loop transfer function with a high phase slope and a useful frequency response, and how the damping contours can be used to design robust controllers, not only CRONE controllers but also PD and QFT controllers.


2016 ◽  
Vol 2016 (4) ◽  
pp. 8-10 ◽  
Author(s):  
B.I. Kuznetsov ◽  
◽  
A.N. Turenko ◽  
T.B. Nikitina ◽  
A.V. Voloshko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document