STABILITY OF CLOSED LOOP FRACTIONAL ORDER SYSTEMS AND DEFINITION OF DAMPING CONTOURS FOR THE DESIGN OF CONTROLLERS

2012 ◽  
Vol 22 (04) ◽  
pp. 1230013 ◽  
Author(s):  
PATRICK LANUSSE ◽  
ALAIN OUSTALOUP ◽  
VALERIE POMMIER-BUDINGER

Fractional complex order integrator has been used since 1991 for the design of robust control-systems. In the CRONE control methodology, it permits the parameterization of open loop transfer function which is optimized in a robustness context. Sets of fractional order integrators that lead to a given damping factor have also been used to build iso-damping contours on the Nichols plane. These iso-damping contours can also be used to optimize the third CRONE generation open loop transfer function. However, these contours have been built using nonband-limited integrators, even if such integrators reveal to lead to unstable closed loop systems. One objective of this paper is to show how the band-limitation modifies the left half-plane dominant poles of the closed loop system and removes the right half-plane ones. Also presented are how to obtain a fractional order open loop transfer function with a high phase slope and a useful frequency response, and how the damping contours can be used to design robust controllers, not only CRONE controllers but also PD and QFT controllers.

Author(s):  
Vahid Badri ◽  
Mohammad Saleh Tavazoei

This paper deals with the problem of simultaneous compensation of the gain, phase, and phase-slope at an arbitrary frequency by using a fractional-order lead/lag compensator. The necessary and sufficient conditions for feasibility of the problem are derived. Also, the number of existing solutions (i.e., the number of distinct fractional-order lead/lag compensators satisfying the considered compensation requirements) is analytically found. Moreover, as a sample application, it is shown that the obtained results for the considered compensation problem are helpful in tuning fractional-order lead/lag compensators for simultaneously achieving desired phase margin, desired gain cross frequency, and flatness of the Bode phase plot of the loop transfer function at this frequency.


Author(s):  
Ramiro S. Barbosa ◽  
J. A. Tenreiro Machado ◽  
Isabel M. Ferreira

This paper gives an interpretation of the classical PID controller tuning based on the fractional calculus theory. The PID parameters are calculated according with the specifications of an elementary system whose open-loop transfer function is a fractional order integrator (FOI). The performances of the two systems are compared and illustrated through the frequency and time responses.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Viorel Nicolau

In this paper, aspects of analytical design of PID controllers are studied, by combining pole placement technique with symmetrical optimum criterion. The proposed method is based on low-order plant model with pure integrator, and it can be used for both fast and slow processes. Starting from the desired closed-loop transfer function, which contains a second-order oscillating system and a lead-lag compensator, it is shown that the zero value depends on the real-pole value of closed-loop transfer function. In addition, there is only one pole value, which satisfies the assumptions of symmetrical optimum criterion imposed to open-loop transfer function. In these conditions, by combining the pole placement technique with symmetrical optimum criterion, the analytical expressions of the controller parameters can be simplified. For simulations, PID autopilot design for heading control problem of a conventional ship is considered.


2020 ◽  
Vol 42 (16) ◽  
pp. 3303-3319
Author(s):  
Sajad Pourali ◽  
Hamed Mojallali

In this paper, a predictor-based fractional disturbance rejection control (PFDRC) scheme is proposed for processes subject to input delay. The proposed scheme can be generally applied to open-loop stable, integrative, and unstable integer-order processes, but it can be particularly utilized for open-loop stable fractional-order systems. A closed-loop reference model is formulated based on Bode’s ideal transfer function. The primary control design objective is to enable the output of input-delay process to follow the closed-loop reference model. Towards this end, the closed-loop transfer function of the PFDRC must take the same structure as that of the reference model. Meanwhile, the adverse effects of the input delay must be mitigated. To meet the latter, a filtered Smith predictor (FSP) is employed to provide a prediction of delay-less output response. To address the former, process dynamics are treated as a common disturbance; then, a fractional-order extended state observer (FESO) is introduced to estimate the delay-less output response and also the total disturbance (i.e. external disturbance and system uncertainties). The PFDRC feedback controller is easily derived by the gain crossover frequency of Bode’s ideal transfer function which facilitates the tuning process. The convergence analysis of the FESO is carried out in terms of BIBO stability. The effectiveness of the proposed control scheme is verified through three illustrative examples from the literature.


Author(s):  
Hanseung Woo ◽  
Kyoungchul Kong

Safety is one of important factors in control of mechatronic systems interacting with humans. In order to evaluate the safety of such systems, mechanical impedance is often utilized as it indicates the magnitude of reaction forces when the systems are subjected to motions. Namely, the mechatronic systems should have low mechanical impedance for improved safety. In this paper, a methodology to design controllers for reduction of mechanical impedance is proposed. For the proposed controller design, the mathematical definition of the mechanical impedance for open-loop and closed-loop systems is introduced. Then the controllers are designed for stable and unstable systems such that they effectively lower the magnitude of mechanical impedance with guaranteed stability. The proposed method is verified through case studies including simulations.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 185 ◽  
Author(s):  
Phillip Durdaut ◽  
Michael Höft ◽  
Jean-Michel Friedt ◽  
Enrico Rubiola

Surface acoustic wave (SAW) sensors in the form of two-port resonators or delay lines are widely used in various fields of application. The readout of such sensors is achieved by electronic systems operating either in an open-loop or in a closed-loop configuration. The mode of operation of the sensor system is usually chosen based on requirements like, e.g., bandwidth, dynamic range, linearity, costs, and immunity against environmental influences. Because the limit of detection (LOD) at the output of a sensor system is often one of the most important figures of merit, both readout structures, i.e., open-loop and closed-loop systems, are analyzed in terms of the minimum achievable LOD. Based on a comprehensive phase noise analysis of these structures for both resonant sensors and delay line sensors, expressions for the various limits of detection are derived. Under generally valid conditions, the equivalence of open-loop and closed-loop operation is shown for both types of sensors. These results are not only valid for SAW devices, but are also applicable to all kinds of phase-sensitive sensors.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Yong-Ren Pu ◽  
Thomas A. Posbergh

The problem of stabilization of rigid bodies has received a great deal of attention for many years. People have developed a variety of feedback control laws to meet their design requirements and have formulated various but mostly open loop numerical algorithms for the dynamics of the corresponding closed loop systems. Since the conserved quantities such as energy, momentum, and symmetry play an important role in the dynamics, we investigate the conserved quantities for the closed loop control systems which formally or asymptotically stabilize rigid body rotation and modify the open loop numerical algorithms so that they preserve these important properties. Using several examples, the authors first use the open loop algorithm to simulate the tumbling rigid body actions and then use the resulting closed loop one to stabilize them.


Sign in / Sign up

Export Citation Format

Share Document