scholarly journals Scapular Muscle Exercises Following Neck Dissection Surgery for Head and Neck Cancer: A Comparative Electromyographic Study

2013 ◽  
Vol 93 (6) ◽  
pp. 786-797 ◽  
Author(s):  
Aoife C. McGarvey ◽  
Peter Grant Osmotherly ◽  
Gary R. Hoffman ◽  
Pauline E. Chiarelli

Background Shoulder pain and dysfunction can occur following neck dissection surgery for cancer. These conditions often are due to accessory nerve injury. Such an injury leads to trapezius muscle weakness, which, in turn, alters scapular biomechanics. Objective The aim of this study was to assess which strengthening exercises incur the highest dynamic activity of affected trapezius and accessory scapular muscles in patients with accessory nerve dysfunction compared with their unaffected side. Design A comparative design was utilized for this study. Methods The study was conducted in a physical therapy department. Ten participants who had undergone neck dissection surgery for cancer and whose operated side demonstrated clinical signs of accessory nerve injury were recruited. Surface electromyographic activity of the upper trapezius, middle trapezius, rhomboid major, and serratus anterior muscles on the affected side was compared dynamically with that of the unaffected side during 7 scapular strengthening exercises. Results Electromyographic activity of the upper and middle trapezius muscles of the affected side was lower than that of the unaffected side. The neck dissection side affected by surgery demonstrated higher levels of upper and middle trapezius muscle activity during exercises involving overhead movement. The rhomboid and serratus anterior muscles of the affected side demonstrated higher levels of activity compared with the unaffected side. Limitations Exercises were repeated 3 times on one occasion. Muscle activation under conditions of increased exercise dosage should be inferred with caution. Conclusions Overhead exercises are associated with higher levels of trapezius muscle activity in patients with accessory nerve injury following neck dissection surgery. However, pain and correct scapular form must be carefully monitored in this patient group during exercises. Rhomboid and serratus anterior accessory muscles may have a compensatory role, and this role should be considered during rehabilitation.

2000 ◽  
Vol 80 (3) ◽  
pp. 276-291 ◽  
Author(s):  
Paula M Ludewig ◽  
Thomas M Cook

AbstractBackground and Purpose. Treatment of patients with impingement symptoms commonly includes exercises intended to restore “normal” movement patterns. Evidence that indicates the existence of abnormal patterns in people with shoulder pain is limited. The purpose of this investigation was to analyze glenohumeral and scapulothoracic kinematics and associated scapulothoracic muscle activity in a group of subjects with symptoms of shoulder impingement relative to a group of subjects without symptoms of shoulder impingement matched for occupational exposure to overhead work. Subjects. Fifty-two subjects were recruited from a population of construction workers with routine exposure to overhead work. Methods. Surface electromyographic data were collected from the upper and lower parts of the trapezius muscle and from the serratus anterior muscle. Electromagnetic sensors simultaneously tracked 3-dimensional motion of the trunk, scapula, and humerus during humeral elevation in the scapular plane in 3 hand-held load conditions: (1) no load, (2) 2.3-kg load, and (3) 4.6-kg load. An analysis of variance model was used to test for group and load effects for 3 phases of motion (31°–60°, 61°–90°, and 91°–120°). Results. Relative to the group without impingement, the group with impingement showed decreased scapular upward rotation at the end of the first of the 3 phases of interest, increased anterior tipping at the end of the third phase of interest, and increased scapular medial rotation under the load conditions. At the same time, upper and lower trapezius muscle electromyographic activity increased in the group with impingement as compared with the group without impingement in the final 2 phases, although the upper trapezius muscle changes were apparent only during the 4.6-kg load condition. The serratus anterior muscle demonstrated decreased activity in the group with impingement across all loads and phases. Conclusion and Discussion. Scapular tipping (rotation about a medial to lateral axis) and serratus anterior muscle function are important to consider in the rehabilitation of patients with symptoms of shoulder impingement related to occupational exposure to overhead work.


2007 ◽  
Vol 35 (10) ◽  
pp. 1744-1751 ◽  
Author(s):  
Ann M. Cools ◽  
Vincent Dewitte ◽  
Frederick Lanszweert ◽  
Dries Notebaert ◽  
Arne Roets ◽  
...  

Background Strengthening exercises for the scapular muscles are used in the treatment of scapulothoracic dysfunction related to shoulder injury. In view of the intermuscular and intramuscular imbalances often established in these patients, exercises promoting lower trapezius (LT), middle trapezius (MT), and serratus anterior (SA) activation with minimal activity in the upper trapezius (UT) are recommended. Hypothesis Of 12 commonly used trapezius strengthening exercises, a selection can be performed for muscle balance rehabilitation, based on a low UT/LT, UT/MT, or UT/SA muscle ratio. Study Design Controlled laboratory study. Methods Electromyographic activity of the 3 trapezius parts and the SA was measured in 45 healthy subjects performing 12 commonly described scapular exercises, using surface electromyography. Results For each intramuscular trapezius ratio (UT/LT, UT/MT), 3 exercises were selected for restoration of muscle balance. The exercises side-lying external rotation, side-lying forward flexion, prone horizontal abduction with external rotation, and prone extension were found to be the most appropriate for intramuscular trapezius muscle balance rehabilitation. For the UT/SA ratio, none of the exercises met the criteria for optimal intermuscular balance restoration. Conclusion In cases of trapezius muscle imbalance, some exercises are preferable over others because of their low UT/LT and UT/MT ratios. Clinical Relevance In the selection of rehabilitation exercises, the clinician should have a preference for exercises with high activation of the LT and MT and low activity of the UT.


Toukeibu Gan ◽  
2008 ◽  
Vol 34 (1) ◽  
pp. 67-70 ◽  
Author(s):  
Tetsuro Onitsuka ◽  
Mitsuru Ebihara ◽  
Yoshiyuki Iida ◽  
Tomoyuki Kamijyo ◽  
Rie Asano ◽  
...  

2012 ◽  
Vol 47 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Joseph M. McBeth ◽  
Jennifer E. Earl-Boehm ◽  
Stephen C. Cobb ◽  
Wendy E. Huddleston

Context: Lower extremity overuse injuries are associated with gluteus medius (GMed) weakness. Understanding the activation of muscles about the hip during strengthening exercises is important for rehabilitation. Objective: To compare the electromyographic activity produced by the gluteus medius (GMed), tensor fascia latae (TFL), anterior hip flexors (AHF), and gluteus maximus (GMax) during 3 hip-strengthening exercises: hip abduction (ABD), hip abduction with external rotation (ABD-ER), and clamshell (CLAM) exercises. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: Twenty healthy runners (9 men, 11 women; age = 25.45 ± 5.80 years, height = 1.71 ± 0.07 m, mass = 64.43 ± 7.75 kg) participated. Intervention(s): A weight equal to 5% body mass was affixed to the ankle for the ABD and ABD-ER exercises, and an equivalent load was affixed for the CLAM exercise. A pressure biofeedback unit was placed beneath the trunk to provide positional feedback. Main Outcome Measure(s): Surface electromyography (root mean square normalized to maximal voluntary isometric contraction) was recorded over the GMed, TFL, AHF, and GMax. Results: Three 1-way, repeated-measures analyses of variance indicated differences for muscle activity among the ABD (F3,57 = 25.903, P<.001), ABD-ER (F3,57 = 10.458, P<.001), and CLAM (F3,57 = 4.640, P=.006) exercises. For the ABD exercise, the GMed (70.1 ± 29.9%), TFL (54.3 ± 19.1%), and AHF (28.2 ± 21.5%) differed in muscle activity. The GMax (25.3 ± 24.6%) was less active than the GMed and TFL but was not different from the AHF. For the ABD-ER exercise, the TFL (70.9 ± 17.2%) was more active than the AHF (54.3 ± 24.8%), GMed (53.03 ± 28.4%), and GMax (31.7 ± 24.1 %). For the CLAM exercise, the AHF (54.2 ± 25.2%) was more active than the TFL (34.4 ± 20.1%) and GMed (32.6 ± 16.9%) but was not different from the GMax (34.2 ± 24.8%). Conclusions: The ABD exercise is preferred if targeted activation of the GMed is a goal. Activation of the other muscles in the ABD-ER and CLAM exercises exceeded that of GMed, which might indicate the exercises are less appropriate when the primary goal is the GMed activation and strengthening.


2021 ◽  
Vol 2 ◽  
Author(s):  
Caroline Prince ◽  
Jean-Benoît Morin ◽  
Jurdan Mendiguchia ◽  
Johan Lahti ◽  
Kenny Guex ◽  
...  

To train hamstring muscle specifically to sprint, strengthening programs should target exercises associated with horizontal force production and high levels of hamstring activity. Therefore, the objectives of this study were to analyze the correlation between force production capacities during sprinting and hamstring strengthening exercises, and to compare hamstring muscle activity during sprinting and these exercises. Fourteen track and field regional level athletes performed two maximal 50-m sprints and six strengthening exercises: Nordic hamstring exercises without and with hip flexion, Upright-hip-extension in isometric and concentric modalities, Standing kick, and Slide-leg-bridge. The sprinting horizontal force production capacity at low (F0) and high (V0) speeds was computed from running velocity data. Hamstring muscle performances were assessed directly or indirectly during isolated exercises. Hamstring muscle electromyographic activity was recorded during all tasks. Our results demonstrate substantially large to very large correlations between V0 and performances in the Upright-hip-extension in isometric (rs = 0.56; p = 0.040), Nordic hamstring exercise without hip flexion (rs = 0.66; p = 0.012) and with 90° hip flexion (rs = 0.73; p = 0.003), and between F0 and Upright-hip-extension in isometric (rs = 0.60; p = 0.028) and the Nordic hamstring exercise without hip flexion (rs = 0.59; p = 0.030). However, none of the test exercises activated hamstring muscles more than an average of 60% of the maximal activation during top-speed sprinting. In conclusion, training programs aiming to be sprint-specific in terms of horizontal force production could include exercises such as the Upright-hip-extension and the Nordic hamstring exercise, in addition to maximal sprinting activity, which is the only exercise leading to high levels of hamstring muscle activity.


2014 ◽  
Vol 46 ◽  
pp. 248
Author(s):  
Nicole L. Rogers ◽  
Joaquin Calatayud ◽  
Sebastien Borreani ◽  
Juan C. Colado ◽  
N Travis Triplett ◽  
...  

2005 ◽  
Vol 85 (11) ◽  
pp. 1128-1138 ◽  
Author(s):  
Lori A Michener ◽  
N Douglas Boardman ◽  
Peter E Pidcoe ◽  
Angela M Frith

Abstract Background and Purpose. Scapular muscle performance evaluated with a handheld dynamometer (HHD) has been investigated only in people without shoulder dysfunction for test-retest reliability of data obtained with a single scapular muscle test. The purpose of this study was to assess the reliability, error, and validity of data obtained with an HHD for 4 scapular muscle tests in subjects with shoulder pain and functional loss. Subjects and Methods. Subjects (N=40) with shoulder pain and functional loss were tested bymeasuring the kilograms applied with an HHD during 3 trials for muscle tests for the lower trapezius, upper trapezius, middle trapezius, and serratus anterior muscles. Concurrently, surface electromyography (sEMG) data were collected for the 4 muscles. The same procedures were performed 24 to 72 hours after the initial testing by the same tester. Muscle tests were performed 3 times, and the results were averaged for data analysis. Results. Intraclass correlation coefficients for intratester reliability of measurements of isometricforce obtained using an HHD ranged from .89 to .96. The standard error of the measure (90% confidenceinterval [CI]) ranged from 1.3 to 2.7 kg; the minimal detectable change (90% CI) ranged from 1.8 to 3.6 kg. Construct validity assessment, done by comparing the amounts of isometric muscle activity (sEMG) for each muscle across the 4 muscle tests, revealed that the muscle activity of the upper trapezius and lower trapezius muscles washighest during their respective tests. Conversely, the isometric muscle activity of the middle trapezius and serratus anterior muscles was not highest during their respective tests. Discussion and Conclusion. In people with shoulder pain and functional loss, the intrarater reliability and error over 1 to 3 days were established using an HHD for measurement of isometric force for the assessment of scapular muscle performance. Error values can be used to make decisions regarding individual patients. Construct validity was established for the lower and upper trapezius muscle tests; therefore, these tests are advocated for use. However, construct validity was not demonstrated for the serratus anterior and middle trapezius muscle tests as performed in this study. Further investigation of these muscle tests is warranted.


2017 ◽  
Vol 26 (1) ◽  
pp. 112-115 ◽  
Author(s):  
Andrés A. Maldonado ◽  
Robert J. Spinner

Spinal accessory nerve (SAN) injury results in loss of motor function of the trapezius muscle and leads to severe shoulder problems. Primary end-to-end or graft repair is usually the standard treatment. The authors present 2 patients who presented late (8 and 10 months) after their SAN injuries, in whom a lateral pectoral nerve transfer to the SAN was performed successfully using a supraclavicular approach.


2017 ◽  
Vol 26 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Ui-jae Hwang ◽  
Oh-yun Kwon ◽  
In-cheol Jeon ◽  
Si-hyun Kim ◽  
Jong-hyuck Weon

Context:The push-up-plus (PP) exercise has been recommended for strengthening of the serratus anterior (SA). Previous studies have investigated the effect of different stability properties of the base of support to adjust the difficulty level of SA muscle-strengthening exercises in the PP position. However, the optimal humeral-elevation angle (HEA) for selective activation and maximum contraction of the SA during PP has not been investigated.Objectives:To assess the effects of HEA during PP on electromyographic (EMG) activity in the SA, upper trapezius (UT), and pectoralis major (PM) and on the UT:SA and PM:SA activity ratios.Design:Comparative, repeated-measures design.Setting:University research laboratory.Participants:29 healthy men.Main Outcome Measures:The subjects performed PP at 3 different HEAs (60°, 90°, and 120°); EMG activity in the SA, UT, and PM was measured, and the UT:SA and PM:SA activity ratios were calculated. Differences in muscle activity and ratios between the 60°, 90°, and 120° HEAs were assessed using 1-way repeated-measures analysis of variance; the Bonferroni correction was applied.Results:SA muscle activity was significantly increased, in order of magnitude, at the 120°, 90°, and 60° HEAs. UT:SA and PM:SA activity ratios were significantly greater during performance of the PP at an HEA of 60° than at HEAs of 120° and 90°.Conclusion:The results suggest that an HEA of 120° should be used during performance of the PP because it produces greater SA activation than HEAs of 60° and 90°.


Sign in / Sign up

Export Citation Format

Share Document