Effect of Humeral-Elevation Angle on Electromyographic Activity in the Serratus Anterior During the Push-Up-Plus Exercise

2017 ◽  
Vol 26 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Ui-jae Hwang ◽  
Oh-yun Kwon ◽  
In-cheol Jeon ◽  
Si-hyun Kim ◽  
Jong-hyuck Weon

Context:The push-up-plus (PP) exercise has been recommended for strengthening of the serratus anterior (SA). Previous studies have investigated the effect of different stability properties of the base of support to adjust the difficulty level of SA muscle-strengthening exercises in the PP position. However, the optimal humeral-elevation angle (HEA) for selective activation and maximum contraction of the SA during PP has not been investigated.Objectives:To assess the effects of HEA during PP on electromyographic (EMG) activity in the SA, upper trapezius (UT), and pectoralis major (PM) and on the UT:SA and PM:SA activity ratios.Design:Comparative, repeated-measures design.Setting:University research laboratory.Participants:29 healthy men.Main Outcome Measures:The subjects performed PP at 3 different HEAs (60°, 90°, and 120°); EMG activity in the SA, UT, and PM was measured, and the UT:SA and PM:SA activity ratios were calculated. Differences in muscle activity and ratios between the 60°, 90°, and 120° HEAs were assessed using 1-way repeated-measures analysis of variance; the Bonferroni correction was applied.Results:SA muscle activity was significantly increased, in order of magnitude, at the 120°, 90°, and 60° HEAs. UT:SA and PM:SA activity ratios were significantly greater during performance of the PP at an HEA of 60° than at HEAs of 120° and 90°.Conclusion:The results suggest that an HEA of 120° should be used during performance of the PP because it produces greater SA activation than HEAs of 60° and 90°.

2020 ◽  
Vol 29 (2) ◽  
pp. 225-230
Author(s):  
Rodrigo Cappato de Araújo ◽  
Vinícius Yan Santos Nascimento ◽  
Rafaela Joyce Barbosa Torres ◽  
Francis Trombini-Souza ◽  
David Behm ◽  
...  

Context: It is believed that conscious abdominal contraction (CAC) during exercise encourages greater periscapular activation through existing myofascial connections. On the other hand, it is postulated that the use of unstable surfaces would promote greater neuromuscular demand. Objective: To analyze the effect of CAC on periscapular muscle activity during push-up plus exercise on stable and unstable surfaces and to evaluate the correlation between electromyographic (EMG) activity of the serratus anterior (SA) and abdominal oblique muscles. Design: Repeated-measures design in a single group, pre–post CAC. Setting: Biomechanics laboratory. Participants: Twenty-three male volunteers without a history of lesions in the upper limbs participated in the study. Main Outcome Measures: Five repetitions of push-ups on stable and unstable surfaces were performed with and without instruction for CAC. The normalized amplitude of the EMG activity was obtained from the muscles of the upper, middle, and lower trapezius, SA upper (SA_5th) and lower (SA_7th) portions, external oblique (EO), and internal oblique. Results: CAC increased the activity of the EO, internal oblique, middle trapezius, and SA (P < .05) in both surfaces. The use of the unstable surface increased the EMG activity of the EO, SA_7th, and middle trapezius and decreased the EMG activity of the SA_5th. However, all changes observed in EMG signals were of low magnitude, with effect sizes lower than 0.45. There was a weak correlation between the EMG activity of the EO and SA_5th (r = .24) and a strong correlation between the EO and SA_7th (r = .70). Conclusion: The isolated use of CAC or unstable surface during push-up seems to present no practical relevance, but the combined use of these strategies may increase activation of the SA_7th and middle trapezius muscles.


2013 ◽  
Vol 22 (2) ◽  
pp. 108-114 ◽  
Author(s):  
Nahid Tahan ◽  
Amir Massoud Arab ◽  
Bita Vaseghi ◽  
Khosro Khademi

Context:Coactivation of abdominal and pelvic-floor muscles (PFM) is an issue considered by researchers recently. Electromyography (EMG) studies have shown that the abdominal-muscle activity is a normal response to PFM activity, and increase in EMG activity of the PFM concomitant with abdominal-muscle contraction was also reported.Objective:The purpose of this study was to compare the changes in EMG activity of the deep abdominal muscles during abdominal-muscle contraction (abdominal hollowing and bracing) with and without concomitant PFM contraction in healthy and low-back-pain (LBP) subjects.Design:A 2 × 2 repeated-measures design.Setting:Laboratory.Participants:30 subjects (15 with LBP, 15 without LBP).Main Outcome Measures:Peak rectified EMG of abdominal muscles.Results:No difference in EMG of abdominal muscles with and without concomitant PFM contraction in abdominal hollowing (P = .84) and abdominal bracing (P = .53). No difference in EMG signal of abdominal muscles with and without PFM contraction between LBP and healthy subjects in both abdominal hollowing (P = .88) and abdominal bracing (P = .98) maneuvers.Conclusion:Adding PFM contraction had no significant effect on abdominal-muscle contraction in subjects with and without LBP.


2003 ◽  
Vol 12 (2) ◽  
pp. 143-161 ◽  
Author(s):  
John H. Hollman ◽  
Robert H. Deusinger ◽  
Linda R. Van Dillen ◽  
Dequan Zou ◽  
Scott D. Minor ◽  
...  

Context:Analyses of the path of instant center of rotation (PICR) can be used to infer joint-surface rolling and sliding motion (arthrokinematics). Previous PICR research has not quantified arthrokinematics during weight-bearing (WB) movement conditions or studied the association of muscle activity with arthrokinematics.Objective:To examine tibiofemoral arthrokinematics and thigh-muscle EMG during WB and non-weight-bearing (NWB) movement.Design:2 x 9 repeated-measures experiment.Setting:Laboratory.Participants:11 healthy adults (mean age 24 years).Main Outcome Measures:Tibiofemoral percentage rolling arthrokinematics and quadriceps: hamstring EMG activity.Results:WB percentage rolling (76.0% ± 4.7%) exceeded that of NWB (57.5% ± 1.8%) through terminal knee extension (F8,80= 8.99,P< .001). Quadriceps:hamstring EMG ratios accounted for 45.1% and 34.7% of the variance in arthrokinematics throughout the WB and NWB movement conditions, respectively (P< .001).Conclusions:More joint-surface rolling occurs through terminal knee extension during WB movement and is associated with an increase in hamstring activity.


2007 ◽  
Vol 16 (4) ◽  
pp. 285-294 ◽  
Author(s):  
Christine L. Berg ◽  
Joseph M. Hart ◽  
Riann Palmieri-Smith ◽  
Kevin M. Cross ◽  
Christopher D. Ingersoll

Context:If ankle joint cryotherapy impairs the ability of the ankle musculature to counteract potentially injurious forces, the ankle is left vulnerable to injury.Objective:To compare peroneal reaction to sudden inversion following ankle joint cryotherapy.Design:Repeated measures design with independent variables, treatment (cryotherapy and control), and time (baseline, immediately post treatment, 15 minutes post treatment, and 30 minutes post treatment).Setting:University research laboratory.Patients or Other Participants:Twenty-seven healthy volunteers.Intervention(s):An ice bag was secured to the lateral ankle joint for 20 minutes.Main Outcome Measures:The onset and average root mean square amplitude of EMG activity in the peroneal muscles was calculated following the release of a trap door mechanism causing inversion.Results:There was no statistically significant change from baseline for peroneal reaction time or average peroneal muscle activity at any post treatment time.Conclusions:Cryotherapy does not affect peroneal muscle reaction following sudden inversion perturbation.


Healthcare ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1636
Author(s):  
Hyoungwon Lim

Selective serratus anterior (SA) strengthening without compensatory movement of the shoulder stabilizers is essential for shoulder stability and functional movement without causing shoulder injury and dysfunction. The purpose of this study was to compare electromyographic (EMG) activity between the SA, upper trapezius (UT), lower trapezius (LT), and pectoralis major (PM) during the knee push-up plus (KPUP) and modified Vojta’s 3-point support (MV3PS) exercises. Scapular stabilizer muscle activity (UT, LT, SA, and PM) was investigated during the KPUP and MV3PS exercises in 40 healthy adults (19 males, 21 females) using surface EMG. Muscle activity of the SA was significantly higher during the MV3PS exercise than during the KPUP (p < 0.05). However, muscle activity in the PM was significantly lower during the MV3PS exercise (p < 0.05). In addition, the LT and UT showed less muscle activity during the MV3PS exercise, although the difference was not statistically significant (p > 0.05). These findings suggest that the MV3PS exercise better activates the SA than KPUP.


2008 ◽  
Vol 43 (5) ◽  
pp. 464-469 ◽  
Author(s):  
W. Steven Tucker ◽  
Brian M. Campbell ◽  
Erik E. Swartz ◽  
Charles W. Armstrong

Abstract Context: The Cuff Link is a closed kinetic chain rehabilitation apparatus for the upper extremity. Limited research has established its effectiveness to elicit muscle activation of the scapular muscles. Objective: To determine if scapular muscle activation differs in response to 2 upper extremity closed kinetic chain exercises: Cuff Link and standard push-up. Design: A single-group, repeated-measures design. Setting: Controlled laboratory. Patients or Other Participants: Twenty-eight healthy individuals (13 women: age  =  19.69 ± 1.55 years, height  =  167.44 ± 9.52 cm, mass  =  61.00 ± 8.79 kg; 15 men: age  =  22.00 ± 3.91 years, height  =  181.44 ± 6.60 cm, mass  =  82.36 ± 13.23 kg) with no history of shoulder or low back injury volunteered to participate in this study. Intervention(s): Participants performed 10 trials of complete revolutions on the Cuff Link and 10 full–weight-bearing push-ups. We controlled trial velocity and randomized order. Trunk and shoulder positions were normalized to the participant's height. Using surface electromyography, we recorded muscle activity of the serratus anterior, middle trapezius, and lower trapezius. Rectified and smoothed electromyography data for the serratus anterior, middle trapezius, and lower trapezius were normalized as a percentage of the maximal voluntary isometric contractions (%MVIC). Main Outcome Measure(s): Mean muscle activity of the serratus anterior, middle trapezius, and lower trapezius. We used paired-samples t tests to analyze the mean data for each condition. The α level was adjusted to .016 to avoid a type I error. Results: Middle trapezius %MVIC was greater during push-ups (27.01 ± 20.40%) than during use of the Cuff Link (11.49 ± 9.46%) (P  =  .001). Lower trapezius %MVIC was greater during push-ups (36.07 ± 18.99%) than during use of the Cuff Link (16.29 ± 8.64%) (P  =  .001). There was no difference in %MVIC for the serratus anterior between conditions. Conclusions: The push-up demonstrated greater middle trapezius and lower trapezius activation levels compared with the Cuff Link. However, the push-up had a high participant failure rate. Because serratus anterior activation levels were similar, the Cuff Link may be an appropriate alternative for individuals lacking the upper body strength to perform a push-up.


Author(s):  
Thomas Patselas ◽  
Stefanos Karanasios ◽  
Vasiliki Sakellari ◽  
Ioannis Fysekis ◽  
Marios I. Patselas ◽  
...  

2016 ◽  
Vol 115 (6) ◽  
pp. 3238-3248 ◽  
Author(s):  
Adam G. Rouse ◽  
Marc H. Schieber

In reaching to grasp an object, proximal muscles that act on the shoulder and elbow classically have been viewed as transporting the hand to the intended location, while distal muscles that act on the fingers simultaneously shape the hand to grasp the object. Prior studies of electromyographic (EMG) activity in upper extremity muscles therefore have focused, by and large, either on proximal muscle activity during reaching to different locations or on distal muscle activity as the subject grasps various objects. Here, we examined the EMG activity of muscles from the shoulder to the hand, as monkeys reached and grasped in a task that dissociated location and object. We quantified the extent to which variation in the EMG activity of each muscle depended on location, on object, and on their interaction—all as a function of time. Although EMG variation depended on both location and object beginning early in the movement, an early phase of substantial location effects in muscles from proximal to distal was followed by a later phase in which object effects predominated throughout the extremity. Interaction effects remained relatively small. Our findings indicate that neural control of reach-to-grasp may occur largely in two sequential phases: the first, serving to project the entire upper extremity toward the intended location, and the second, acting predominantly to shape the entire extremity for grasping the object.


2012 ◽  
Vol 47 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Joseph M. McBeth ◽  
Jennifer E. Earl-Boehm ◽  
Stephen C. Cobb ◽  
Wendy E. Huddleston

Context: Lower extremity overuse injuries are associated with gluteus medius (GMed) weakness. Understanding the activation of muscles about the hip during strengthening exercises is important for rehabilitation. Objective: To compare the electromyographic activity produced by the gluteus medius (GMed), tensor fascia latae (TFL), anterior hip flexors (AHF), and gluteus maximus (GMax) during 3 hip-strengthening exercises: hip abduction (ABD), hip abduction with external rotation (ABD-ER), and clamshell (CLAM) exercises. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: Twenty healthy runners (9 men, 11 women; age = 25.45 ± 5.80 years, height = 1.71 ± 0.07 m, mass = 64.43 ± 7.75 kg) participated. Intervention(s): A weight equal to 5% body mass was affixed to the ankle for the ABD and ABD-ER exercises, and an equivalent load was affixed for the CLAM exercise. A pressure biofeedback unit was placed beneath the trunk to provide positional feedback. Main Outcome Measure(s): Surface electromyography (root mean square normalized to maximal voluntary isometric contraction) was recorded over the GMed, TFL, AHF, and GMax. Results: Three 1-way, repeated-measures analyses of variance indicated differences for muscle activity among the ABD (F3,57 = 25.903, P&lt;.001), ABD-ER (F3,57 = 10.458, P&lt;.001), and CLAM (F3,57 = 4.640, P=.006) exercises. For the ABD exercise, the GMed (70.1 ± 29.9%), TFL (54.3 ± 19.1%), and AHF (28.2 ± 21.5%) differed in muscle activity. The GMax (25.3 ± 24.6%) was less active than the GMed and TFL but was not different from the AHF. For the ABD-ER exercise, the TFL (70.9 ± 17.2%) was more active than the AHF (54.3 ± 24.8%), GMed (53.03 ± 28.4%), and GMax (31.7 ± 24.1 %). For the CLAM exercise, the AHF (54.2 ± 25.2%) was more active than the TFL (34.4 ± 20.1%) and GMed (32.6 ± 16.9%) but was not different from the GMax (34.2 ± 24.8%). Conclusions: The ABD exercise is preferred if targeted activation of the GMed is a goal. Activation of the other muscles in the ABD-ER and CLAM exercises exceeded that of GMed, which might indicate the exercises are less appropriate when the primary goal is the GMed activation and strengthening.


2020 ◽  
Vol 28 (4) ◽  
pp. 415-422
Author(s):  
Min-Hyeok Kang ◽  
Sang-Min Cha ◽  
Jae-Seop Oh

BACKGROUND: Active interventions for pes planus, including short-foot exercises (SF) and toe-spread-out exercises (TSO), aim to continuously support the medial longitudinal arch (MLA) by activating the abductor hallucis (AbdH) muscle. However, compensatory movements, such as ankle supination and/or plantar flexion, often occur during these exercises. OBJECTIVE: To examine the effects of a novel exercise, i.e., the toe-tap (TT) exercise on AbdH activity and MLA angle. METHODS: A total of 16 participants with pes planus participated in this study. Participants performed SF, TSO, and TT exercises. Electromyographic activity of the AbdH and MLA angle during three AbdH contraction exercises were recorded using surface EMG system and digital image analysis program, respectively. The differences in outcome measures among the three exercises were analyzed using one-way repeated-measures analysis of variance. RESULTS: The EMG activity of the AbdH was significantly greater during the TT exercise compared to the SF and TSO exercises. The MLA angle was significantly smaller during the TT exercise compared with the SF and TSO exercises. CONCLUSIONS: These findings suggest that the TT exercise could be effective in activating the AbdH and increasing height of the MLA, as part of a sports rehabilitation program for individuals with pes planus.


Sign in / Sign up

Export Citation Format

Share Document