New Technology Applications to Increase Oil Recovery by Creating Uniform Flow Profiles in Horizontal Wells: Case Studies and Technology Overview

2005 ◽  
Author(s):  
Eugene E. Ratterman ◽  
Jody R. Augustine ◽  
Benn Arild Voll
2003 ◽  
Author(s):  
D.S. Qudaihy ◽  
F.N. Nughaimish ◽  
A.H. Sunbul ◽  
A.A. Ansari ◽  
D.E. Hembling ◽  
...  

2008 ◽  
Author(s):  
Stig Lyngra ◽  
Abdulkareem Al-Sofi ◽  
Uthman Al-Otaibi ◽  
Mohammed Al-Shakhs ◽  
Ahmad Al-Alawi

2008 ◽  
Author(s):  
Stig Lyngra ◽  
Abdulkareem Mohamad Al-Sofi ◽  
Uthman Faihan Al-Otaibi ◽  
Mohammed Jawad Al-Shakhs ◽  
Ahmad A. Al-Alawi

Author(s):  
S. Lyngra ◽  
A.M. Al-Sofi ◽  
U.F. Al-Otaibi ◽  
M.J. Alshakhs ◽  
A.A. Al-Alawi

2003 ◽  
Vol 20 (1) ◽  
pp. 557-561 ◽  
Author(s):  
A. Carter ◽  
J. Heale

AbstractThis paper updates the earlier account of the Forties Field detailed in Geological Society Memoir 14 (Wills 1991), and gives a brief description of the Brimmond Field, a small Eocene accumulation overlying Forties (Fig. 1).The Forties Field is located 180 km ENE of Aberdeen. It was discovered in 1970 by well 21/10-1 which encountered 119 m of oil bearing Paleocene sands at a depth of 2131 m sub-sea. A five well appraisal programme confirmed the presence of a major discovery including an extension into Block 22/6 to the southeast. Oil-in-place was estimated to be 4600 MMSTB with recoverable reserves of 1800 MM STB. The field was brought onto production in September 1975. Plateau production of 500 MBOD was reached in 1978, declining from 1981 to 77 MBOD in 1999.In September 1992 a programme of infill drilling commenced, which continues today. The earlier infill targets were identified using 3D seismic acquired in 1988. Acquisition of a further 3D survey in 1996 has allowed the infill drilling programme to continue with new seismic imaging of lithology, fluids and saturation changes. The performance of the 1997 drilling showed that high step-out and new technology wells, including multi-lateral and horizontal wells, did not deliver significantly better targets than drilling in previous years.In line with smaller targets, and in the current oil price environment, low cost technology is being developed through the 1999 drilling programme. Through Tubing Rotary Drilling (TTRD) is currently seen as the most promising way of achieving a step


2021 ◽  
Author(s):  
Usman Ahmed ◽  
Zhiheng Zhang ◽  
Ruben Ortega Alfonzo

Abstract Horizontal well completions are often equipped with Inflow Control Devices (ICDs) to optimize flow rates across the completion for the whole length of the interval and to increase the oil recovery. The ICD technology has become useful method of optimizing production from horizontal wells in a wide range of applications. It has proved to be beneficial in horizontal water injectors and steam assisted gravity drainage wells. Traditionally the challenges related to early gas or water breakthrough were dealt with complex and costly workover/intervention operations. ICD manipulation used to be done with down-hole tractor conveyed using an electric line (e-line) cable or by utilization of a conventional coiled tubing (CT) string. Wellbore profile, high doglegs, tubular ID, drag and buoyancy forces added limitations to the e-line interventions even with the use of tractor. Utilization of conventional CT string supplement the uncertainties during shifting operations by not having the assurance of accurate depth and forces applied downhole. A field in Saudi Arabia is completed with open-hole packer with ICD completion system. The excessive production from the wells resulted in increase of water cut, hence ICD's shifting was required. As operations become more complex due to fact that there was no mean to assure that ICD is shifted as needed, it was imperative to find ways to maximize both assurance and quality performance. In this particular case, several ICD manipulating jobs were conducted in the horizontal wells. A 2-7/8-in intelligent coiled tubing (ICT) system was used to optimize the well intervention performance by providing downhole real-time feedback. The indication for the correct ICD shifting was confirmed by Casing Collar Locator (CCL) and Tension & Compression signatures. This paper will present the ICT system consists of a customized bottom-hole assembly (BHA) that transmits Tension, compression, differential pressure, temperature and casing collar locator data instantaneously to the surface via a nonintrusive tube wire installed inside the coiled tubing. The main advantages of the ICT system in this operation were: monitoring the downhole force on the shifting tool while performing ICD manipulation, differential pressure, and accurately determining depth from the casing collar locator. Based on the known estimated optimum working ranges for ICD shifting and having access to real-time downhole data, the operator could decide that required force was transmitted to BHA. This bring about saving job time while finding sleeves, efficient open and close of ICD via applying required Weight on Bit (WOB) and even providing a mean to identify ICD that had debris accumulation. The experience acquired using this method in the successful operation in Saudi Arabia yielded recommendations for future similar operations.


Sign in / Sign up

Export Citation Format

Share Document