Case Study- Real Time Downhole Telemetry CCL and Tension Compression, a Differentiator for Successful Manipulation of ICD's in Horizontal Wells

2021 ◽  
Author(s):  
Usman Ahmed ◽  
Zhiheng Zhang ◽  
Ruben Ortega Alfonzo

Abstract Horizontal well completions are often equipped with Inflow Control Devices (ICDs) to optimize flow rates across the completion for the whole length of the interval and to increase the oil recovery. The ICD technology has become useful method of optimizing production from horizontal wells in a wide range of applications. It has proved to be beneficial in horizontal water injectors and steam assisted gravity drainage wells. Traditionally the challenges related to early gas or water breakthrough were dealt with complex and costly workover/intervention operations. ICD manipulation used to be done with down-hole tractor conveyed using an electric line (e-line) cable or by utilization of a conventional coiled tubing (CT) string. Wellbore profile, high doglegs, tubular ID, drag and buoyancy forces added limitations to the e-line interventions even with the use of tractor. Utilization of conventional CT string supplement the uncertainties during shifting operations by not having the assurance of accurate depth and forces applied downhole. A field in Saudi Arabia is completed with open-hole packer with ICD completion system. The excessive production from the wells resulted in increase of water cut, hence ICD's shifting was required. As operations become more complex due to fact that there was no mean to assure that ICD is shifted as needed, it was imperative to find ways to maximize both assurance and quality performance. In this particular case, several ICD manipulating jobs were conducted in the horizontal wells. A 2-7/8-in intelligent coiled tubing (ICT) system was used to optimize the well intervention performance by providing downhole real-time feedback. The indication for the correct ICD shifting was confirmed by Casing Collar Locator (CCL) and Tension & Compression signatures. This paper will present the ICT system consists of a customized bottom-hole assembly (BHA) that transmits Tension, compression, differential pressure, temperature and casing collar locator data instantaneously to the surface via a nonintrusive tube wire installed inside the coiled tubing. The main advantages of the ICT system in this operation were: monitoring the downhole force on the shifting tool while performing ICD manipulation, differential pressure, and accurately determining depth from the casing collar locator. Based on the known estimated optimum working ranges for ICD shifting and having access to real-time downhole data, the operator could decide that required force was transmitted to BHA. This bring about saving job time while finding sleeves, efficient open and close of ICD via applying required Weight on Bit (WOB) and even providing a mean to identify ICD that had debris accumulation. The experience acquired using this method in the successful operation in Saudi Arabia yielded recommendations for future similar operations.

2021 ◽  
Author(s):  
Thomas Mauchien ◽  
Sharat Kishore ◽  
Amanda Olivio ◽  
Mostafa Ahmed

Abstract Traditional intervention operations with coiled tubing (CT) in extended reach horizontal wells might be difficult to access due to lockup from frictional forces and operational inefficiencies. Using conventional shifting tools requires multiple runs to shift open and close multiple sliding sleeve doors (SSD). This paper is a case study of an electric-line powered shifting intervention operation to shift open an SSD, circulate fluids though the sleeve and into the annulus, and then close and repeat this for another SSD in a long horizontal well—all in a single run. The paper discusses the different methods that can be used to efficiently seek and latch onto the shifting profiles using a tractor, wireline cable, and the shifting tool itself with an inchworm motion. The electric-line shifting tool monitored and verified the opening and closing of the sleeves in real time using its onboard sensors. These techniques were effectively deployed in multiple wells that required the annulus to be displaced with fluid after running smart completions. The completions were installed in the well with the SSDs in a closed position, and the shifting intervention consisted in opening the SSD, pumping fluids through the sleeve, and closing the SSD. The tool was anchored in place in the wellbore during the entire circulating operation, and the SSD was subsequently closed. This operation was then repeated on the second SSD in the wellbore, and the entire operation was completed in a single run. Also, no additional caliper run was needed as the shifting tool verified the position of the SSDs. These methods were used in a long horizontal well with the help of real-time measurements. The tool measurements identified if the SSDs were in open or closed position or anywhere in-between. The shifting tool provided confirmation via its measurements that the sleeve was not partially open. This was particularly important when pumping fluid through the annulus to achieve the maximum flow through the sleeve. Operating using electric-line was extremely efficient and eliminated the need to perform multiple runs, thus achieving time savings on the rig. This is the first time that a paper discusses the different seek methods that can be used for carrying out a electric-line mechanical intervention operation. It represents a novel method using a shifting tool as a caliper to probe and measure the completion inner diameter changes while seeking for the profile. It provides a valuable method for reliably and confidently locating and latching onto a shifting profile. Finally, this is the first time that a paper correlates the theoretical mechanics of shifting a sliding sleeve with consistent results from system integration tests and downhole measurements from the real job.


2021 ◽  
Author(s):  
Stefan Dinger ◽  
Andrei Casali ◽  
Frank Lind ◽  
Azwan Hadi Keong ◽  
Johnny Bårdsen ◽  
...  

Abstract Coiled tubing (CT) operations in the Norwegian continental shelf (NCS) often require a long and large-outside-diameter pipe due to big diameter completions, deep wells, and the need for high annular velocity during fluid circulation. However, getting the CT string onboard becomes a challenge when the crane lifting limit is 35 t, and using a standalone crane barge increases the cost of the operation. The alternative is spooling the CT from a vessel to the platform. Boat spooling is done by placing the CT string on a floating vessel with dynamic positioning while the standard CT injector head is secured at the edge of the platform to pull the pipe from the vessel to an empty CT reel on the platform. The boat is equipped with a CT guide; special tension clamps; and an emergency disconnect system, which consists of a standard CT shear-seal blowout preventer. The technique requires careful study of the platform structure for placement of the injector head support frame, metocean data of the field, and equipment placement on the vessel and platform. The boat spooling operation of a 7,700-m long, 58.7-t, 2.375-in.-outside-diameter CT string was successfully executed for a platform at 70-m height from mean sea level. The total operating time from hooking up the vessel to successfully spooling the string only took 12 hours. Historically for the region, the method has been attempted in sea state of up to 4-m wave height and 16 knots maximum wind speed. For this operation, the spooling was carried out during an average sea state of 2-m wave height and 15-knot wind speed. The continuous CT string allows a telemetry cable to be installed inside the pipe after the CT is spooled onto the platform reel, enabling real-time downhole measurements during the intervention. Such installation is not possible or presents high risk if the CT string is taken onboard by splicing two sections of pipe together with a spoolable connector or butt welding. From a cost perspective, the boat-spooling operation had up to 80% direct cost saving for the operator when compared to other methods of lifting a single CT string onboard, such as using a motion-compensated barge crane. The planning for the boat spooling included several essential contingency plans. Performing a CT boat spooling operation in a complex environment is possible and opens new opportunities to use longer and heavier CT strings, with lower mobilization costs. Such strings enable more advanced and efficient interventions, with the option of using real-time CT downhole measurements during the execution of a wide range of production startup work. This, in turn, is critical to support the drilling of more extended reach wells, which allow access to untapped reservoirs.


2017 ◽  
Author(s):  
Ahmed. Duaij ◽  
Danish. Ahmed ◽  
Mohammad Arifin ◽  
Adzlan Ayob ◽  
Rodrigo Sa ◽  
...  

2021 ◽  
Author(s):  
Ahmed ElSayed Ghonim ◽  
Amr Zeinhom Elfarran ◽  
Osama Aly Okasha ◽  
Ehab Mohamed Haridy ◽  
Mahmoud Mohamed Koriesh ◽  
...  

Abstract This paper represents a challenging rig-less intervention in highly deviated wells with heavy oil that has always been a challenge to conventional electric line (e-line) that is not a valid intervention technique due to its inherent limitations in these harsh environments. Electric Coiled Tubing (E-CT) was utilized not only to achieve safer deployment of the guns, but also to allow real-time operations on three wells which were inaccessible due to heavy oil content and restricted e-line accessibility. A case study is presented for a campaign performed using E-CT to convey the perforating string while pumping nitrogen (N2) to lift the well and achieve flowing under-balance to maximize perforation clean-up and minimize skin. Real-time readings from gamma ray, pressure and temperature sensors were used to accurately position the guns, generate the desired dynamic underbalance, and finally validate successful detonation based on pressure and temperature responses. This was achieved while N2 lifting and firing the guns to optimize the required under-balance value providing immediate feedback related to the production gain to determine the zonal contributions and maximize the economical production gains. Dynamic wellbore behavior software modeling was also used to predict the dynamic under-balance effect for maximizing perforation efficiency. Deployment of E-CT was very challenging in terms of operational execution but was extremely beneficial for the safety of the pipe during such operations. A total of 13 runs comprising of milling, tubing cleaning and drifting were performed to remove the accumulated scales inside the production tubing and to ensure full accessibility to target intervals. Coiled Tubing (CT) dynamic modeling software was utilized to simulate the N2 rate needed to achieve the target underbalance while maintaining safe perforating parameters for the CT while firing the guns. As a result of software simulations, one of the three wells was then recommended for an acid wash treatment which achieved very effective results. 15 perforation runs were performed on the three wells re-perforating a total of 188 ft of interval, resulting in a production increase of more than 300%. This was a significant improvement compared to the previous campaign carried out in 2017 where perforating in static conditions showed no increase in production without work-over rig intervention. E-CT intervention also eliminated the need for waiting on rig schedule and avoiding deferred production.


2012 ◽  
Author(s):  
James Ohioma I Arukhe ◽  
Mubarak Al Dhufairi ◽  
Saleh Ghamdi ◽  
Laurie Duthie ◽  
Tamer Ahmed Elsherif ◽  
...  

2021 ◽  
Author(s):  
Ghulam Murtaza Kalwar ◽  
Saad Hamid ◽  
Sharat Kishore ◽  
Abdulrahman A. Aljughayman ◽  
Nahr M. Abulhamayel ◽  
...  

Abstract Latest developments in drilling and wellbore completion technologies lead to even more complex intervention conditions. Conventional techniques using slickline or coiled tubing are ill-suited for many of these conditions due to operational complexity, effectiveness, or efficiency. Powered mechanical intervention with e-line alleviates some of these limitations and opens lower risk intervention applications. This paper details two applications: a fishing operation that could not be performed with slickline or coiled tubing and a completion disk rupturing operation where the operator saved 1.5 days. Powered mechanical intervention is a combination of complementary technologies that enable "intelligently controlled intervention operations." Downhole tractors enable access into complex well trajectories. Surface-controlled, powered anchors coupled with a linear actuator can generate very high axial forces with precise and real-time downhole measurements of forces and displacement. Operating parameters can be monitored in real time to prevent damage to damaged completion components. Uncontrolled tool movement due to high differential pressures is prevented. Such precise control of downhole forces and movements enables complex intervention operations previously done with coiled tubing or a full workover. The first application example details a fishing operation. A retrievable plug along with its setting tool was stuck in the production tubing after prematurely setting. Multiple fishing attempts with heavy-duty slickline jars were unsuccessful. Coiled tubing was not deployed as its lack of force precision could have generated excessive downhole force and sheared the fish. An e-line-conveyed linear actuator tool was used to latch onto the fish with the help of an overshot and was released from the retrievable plugs by application of optimal, highly controlled, linear force to minimize damage. The second case involved rupturing a ceramic disk installed in completion. High differential pressure across the disk restricted the use of slickline which could have been damaged due to the high expected differential pressure. The alternative with coiled tubing milling requires a larger personnel and equipment footprint in addition to the associated HSE exposure and lack of efficiency. An innovative technique using the e-line linear actuator and a pointed chisel was devised and deployed. Real-time feedback from the tool sensors gave confirmation of the rupturing of various components of the ceramic disk, and the anchors eliminated any tool movement during pressure equalization. The operation was completed in 12 hours, resulting in time savings of almost 36 hours. An e-line intervention is a low risk, effective, and efficient solution while having an accurate depth and positioning, coupled with controlled downhole operations. With precise control of operating parameters, operations which were previously possible with coiled tubing or workover can be done on e-line more efficiently.


Sign in / Sign up

Export Citation Format

Share Document