3D Seismic Geomorphological Analysis of Submarine-fan Turbidite Reservoir Distributions and Shape Variations Using Seismic Facies and Sedimentological Information: Examples from Active Margin Basins

2008 ◽  
Author(s):  
Osamu Takano ◽  
Mizue Nishimura ◽  
Takashi Tsuji ◽  
Tatsuo Saeki ◽  
Tetsuya Fujii
2021 ◽  
Vol 11 (11) ◽  
pp. 5156
Author(s):  
Abd Al-Salam Al-Masgari ◽  
Mohamed Elsaadany ◽  
Numair A. Siddiqui ◽  
Abdul Halim Abdul Latiff ◽  
Azli Abu Bakar ◽  
...  

This study identified the Pleistocene depositional succession of the group (A) (marine, estuarine, and fluvial depositional systems) of the Melor and Inas fields in the central Malay Basin from the seafloor to approximately −507 ms (522 m). During the last few years, hydrocarbon exploration in Malay Basin has moved to focus on stratigraphic traps, specifically those that existed with channel sands. These traps motivate carrying out this research to image and locate these kinds of traps. It can be difficult to determine if closely spaced-out channels and channel belts exist within several seismic sequences in map-view with proper seismic sequence geomorphic elements and stratigraphic surfaces seismic cross lines, or probably reinforce the auto-cyclic aggregational stacking of the avulsing rivers precisely. This analysis overcomes this challenge by combining well-log with three-dimensional (3D) seismic data to resolve the deposition stratigraphic discontinuities’ considerable resolution. Three-dimensional (3D) seismic volume and high-resolution two-dimensional (2D) seismic sections with several wells were utilized. A high-resolution seismic sequence stratigraphy framework of three main seismic sequences (3rd order), four Parasequences sets (4th order), and seven Parasequences (5th order) have been established. The time slice images at consecutive two-way times display single meandering channels ranging in width from 170 to 900 m. Moreover, other geomorphological elements have been perfectly imaged, elements such as interfluves, incised valleys, chute cutoff, point bars, and extinction surfaces, providing proof of rapid growth and transformation of deposits. The high-resolution 2D sections with Cosine of Phase seismic attributes have facilitated identifying the reflection terminations against the stratigraphic amplitude. Several continuous and discontinuous channels, fluvial point bars, and marine sediments through the sequence stratigraphic framework have been addressed. The whole series reveals that almost all fluvial systems lay in the valleys at each depositional sequence’s bottom bars. The degradational stacking patterns are characterized by the fluvial channels with no evidence of fluvial aggradation. Moreover, the aggradation stage is restricted to marine sedimentation incursions. The 3D description of these deposits permits distinguishing seismic facies of the abandoned mud channel and the sand point bar deposits. The continuous meandering channel, which is filled by muddy deposits, may function as horizontal muddy barriers or baffles that might isolate the reservoir body into separate storage containers. The 3rd, 4th, and 5th orders of the seismic sequences were established for the studied succession. The essential geomorphological elements have been imaged utilizing several seismic attributes.


2018 ◽  
Author(s):  
Bazar Atashevich Eskozha ◽  
Marat Utegenovich Aimagambetov ◽  
Marina Petrovna Brichikova ◽  
Dana Serikovna Shaikhina

2001 ◽  
Vol 41 (1) ◽  
pp. 679
Author(s):  
S. Reymond ◽  
E. Matthews ◽  
B. Sissons

This case study illustrates how 3D generalised inversion of seismic facies for reservoir parameters can be successfully applied to image and laterally predict reservoir parameters in laterally discontinuous turbiditic depositional environment where hydrocarbon pools are located in complex combined stratigraphic-structural traps. Such conditions mean that structural mapping is inadequate to define traps and to estimate reserves in place. Conventional seismic amplitude analysis has been used to aid definition but was not sufficient to guarantee presence of economic hydrocarbons in potential reservoir pools. The Ngatoro Field in Taranaki, New Zealand has been producing for nine years. Currently the field is producing 1,000 bopd from seven wells and at three surface locations down from a peak of over 1,500 bopd. The field production stations have been analysed using new techniques in 3D seismic imaging to locate bypassed oils and identify undrained pools. To define the objectives of the study, three questions were asked:Can we image reservoir pools in a complex stratigraphic and structural environment where conventional grid-based interpretation is not applicable due to lack of lateral continuity in reservoir properties?Can we distinguish fluids within each reservoir pools?Can we extrapolate reservoir parameters observed at drilled locations to the entire field using 3D seismic data to build a 3D reservoir model?Using new 3D seismic attributes such as bright spot indicators, attenuation and edge enhancing volumes coupled with 6 AVO (Amplitude Versus Offset) volumes integrated into a single class cube of reservoir properties, made the mapping of reservoir pools possible over the entire data set. In addition, four fluid types, as observed in more than 20 reservoir pools were validated by final inverted results to allow lateral prediction of fluid contents in un-drilled reservoir targets. Well production data and 3D seismic inverted volume were later integrated to build a 3D reservoir model to support updated volumetrics reserves computation and to define additional targets for exploration drilling, additional well planning and to define a water injection plan for pools already in production.


Sign in / Sign up

Export Citation Format

Share Document