submarine fan
Recently Published Documents


TOTAL DOCUMENTS

453
(FIVE YEARS 42)

H-INDEX

34
(FIVE YEARS 4)

2021 ◽  
pp. SP523-2021-48
Author(s):  
M. Namık Çağatay ◽  
K. Kadir Eriş ◽  
Zeynep Erdem

AbstractThe Bosphorus (Istanbul Strait) is natural strait that connects the Black Sea with the Aegean Sea via the Sea of Marmara and Dardanelles Strait. It is a 31 km long and 3.5 km wide winding channel, with an irregular bottom morphology. It has depressions up to -110 m deep, and two sills with depths of -35 and -58 m in the south and north, respectively.Presently, a two-layer water exchange exists through the strait, with the Mediterranean and Black Sea waters forming the lower and upper layers, respectively. The Bosphorus channel extends as shelf valleys on the Black Sea and Sea of Marmara shelves. However, it operated as a river valley or an estuary during the stadial low-stand periods.The infill sedimentary succession of the Bosphorus channel is up to ∼100 m thick above the Palaeozoic-Cretaceous basement with an irregular topography. The oldest sediments are sandy to muddy fluvial-lacustrine facies of late Pleistocene age, which are preserved only in up to -160 m-deep scoured depressions of the basement. They are overlain by mid-late Holocene estuarine-marine shelly sandy to muddy sediments with patches of bioherms and shelly lag deposits.The Bosphorus outlet areas of the Black Sea and Sea of Marmara are characterized by a submarine fan and a shelf valley, respectively. The fan system in the Black Sea started depositing ∼900 yr after the initial vigorous marine water incursion at ∼8.4 14C kyr BP. On the Marmara shelf, extension of the Bosphorus channel is a sinuous shelf valley with a channel-leveé complex, which was deposited by the Black Sea outflow during the 11-10 14C kyr BP. Catastrophic floodings of the Sea of Marmara by torrential Black Sea outflows during the Greenland Interstadial melt water pulses, as well as the strong Mediterranean current towards the Black Sea during the interglacial periods, were responsible for carving the Bosphorus channel and the shelf valleys, as well as removing the sediments belonging to the earlier periods.


2021 ◽  
Author(s):  
Abdul Wahab ◽  
Mrugesh Shringarpure ◽  
David Hoyal ◽  
Kyle Straub

Abstract Limited observations of active turbidity currents at field scales challenges the development of theory that links flow dynamics to the morphology of submarine fans. Here we offer a framework for predicting submarine fan morphologies by simplifying critical environmental forcings such as regional slopes and properties of sediments, through densimetric Froude (ratio of inertial to gravitational forces) and Rouse numbers (ratio of settling velocity of sediments to shear velocity) of turbidity currents. We leverage a depth-average process-based numerical model to simulate an array of submarine fans and measure rugosity as a proxy for their morphological complexity. We show a systematic increase in rugosity by either increasing the densimetric Froude number or decreasing the Rouse number of turbidity currents. These trends reflect gradients in the dynamics of channel migration on the fan surface and help discriminate submarine fans that effectively sequester organic carbon rich mud in deep ocean strata.


2021 ◽  
Author(s):  
◽  
James McClintock

<p>The Glenburn Formation of the East Coast of New Zealand is a Late Cretaceous sedimentary formation consisting of alternating layers of sandstone, mudstone and conglomerate. The Glenburn Formation spans a depositional timeframe of over 10 Ma, is over 1000 m thick, is regionally extensive and is possibly present over large areas offshore. For these reasons, it is important to constrain the paleoenvironment of this unit.  Late Cretaceous paleogeographic reconstructions of the East Coast Basin are, however, hampered by a number of factors, including the pervasive Neogene to modern tectonic deformation of the region, the poorly understood nature of the plate tectonic regime during the Cretaceous, and a lack of detailed sedimentological studies of most of the region’s Cretaceous units. Through detailed mapping of the Glenburn Formation, this study aims to improve inferences of regional Cretaceous depositional environments and paleogeography.  Detailed facies based analysis was undertaken on several measured sections in eastern Wairarapa and southern Hawke’s Bay. Information such as bed thickness, grain size and sedimentary structures were recorded in order to identify distinct facies. Although outcrop is locally extensive, separate outcrop localities generally lie in different thrust blocks, which complicates comparisons of individual field areas and prevents construction of the large-scale, three-dimensional geometry of the Glenburn Formation.  Glenburn Formation consists of facies deposited by sediment gravity flows that were primarily turbidity currents and debris flows. Facies observed are consistent with deposition on a prograding submarine fan system. There is significant variation in facies both within and between sections. Several distinct submarine fan architectural components are recognised, such as fan fringes, fan lobes, submarine channels and overbank deposits. Provenance and paleocurrent indicators are consistent with deposition having occurred on several separate submarine fans, and an integrated regional paleogeographic reconstruction suggests that deposition most likely occurred in a fossil trench following the mid-Cretaceous cessation of subduction along the Pacific-facing margin of Gondwana.</p>


2021 ◽  
Author(s):  
◽  
James McClintock

<p>The Glenburn Formation of the East Coast of New Zealand is a Late Cretaceous sedimentary formation consisting of alternating layers of sandstone, mudstone and conglomerate. The Glenburn Formation spans a depositional timeframe of over 10 Ma, is over 1000 m thick, is regionally extensive and is possibly present over large areas offshore. For these reasons, it is important to constrain the paleoenvironment of this unit.  Late Cretaceous paleogeographic reconstructions of the East Coast Basin are, however, hampered by a number of factors, including the pervasive Neogene to modern tectonic deformation of the region, the poorly understood nature of the plate tectonic regime during the Cretaceous, and a lack of detailed sedimentological studies of most of the region’s Cretaceous units. Through detailed mapping of the Glenburn Formation, this study aims to improve inferences of regional Cretaceous depositional environments and paleogeography.  Detailed facies based analysis was undertaken on several measured sections in eastern Wairarapa and southern Hawke’s Bay. Information such as bed thickness, grain size and sedimentary structures were recorded in order to identify distinct facies. Although outcrop is locally extensive, separate outcrop localities generally lie in different thrust blocks, which complicates comparisons of individual field areas and prevents construction of the large-scale, three-dimensional geometry of the Glenburn Formation.  Glenburn Formation consists of facies deposited by sediment gravity flows that were primarily turbidity currents and debris flows. Facies observed are consistent with deposition on a prograding submarine fan system. There is significant variation in facies both within and between sections. Several distinct submarine fan architectural components are recognised, such as fan fringes, fan lobes, submarine channels and overbank deposits. Provenance and paleocurrent indicators are consistent with deposition having occurred on several separate submarine fans, and an integrated regional paleogeographic reconstruction suggests that deposition most likely occurred in a fossil trench following the mid-Cretaceous cessation of subduction along the Pacific-facing margin of Gondwana.</p>


2021 ◽  
Author(s):  
◽  
Thomas O. H. Orr

<p>Basement rocks in the southern Tararua Range are part of the Torlesse Supergroup, possibly Late Triassic to Late Jurassic in age, and form two distinct associations. The sedimentarv association consists mainly of quartzo-feldspathic sandstone and argillite with minor olistostrome, calcareous siltstone and microsparite. The sandstone and argillite were deposited as turbidites in a mid- to outer- submarine fan environment. The sediment was derived from a heavily dissected active continental margin that was shedding sediment of mainly plutonic and metamorphic origin. The volcanic association consists mainly of metabasite and coloured argillite with minor chert and limestone. Geochemical data indicate that the metabasites were erupted in an oceanic intraplate environment. The nature of amygdules in amygdaloidal metabasites suggests eruption in less than 800m of water. Coloured argillites have two distinct origins, namely sediments formed by the degredation of basalt; and also pelagic material modified by metal-rich effluent either from hydrothermal systems associated with mid-ocean ridges or intraplate volcanism. The rocks of the volcanic association indicate formation in an environment similar to present day mid-ocean islands. Nowhere were rocks of the two associations observed to be conformable. Coupled with this, the nature of the two associations suggests that they were formed in separate environments. The following structural history is proposed: 1) Early veining; 2) Isoclinal folding and development of a NNE striking cleavage; 3) Faulting both at low and high angles to bedding, extreme amounts of which have resulted in mélange; 4) NE-SW trending close to open folds; 5) E-W trending open to gentle folds; 6) Recent faulting, predominantly NE trending strike-slip faults. The nature of the two associations and the deformational style and history supports an accretionary prism model for the development of the Torlesse Supergroup. Rocks of the southern Tararua Range show many similarities with, and probably represent a northward continuation of, the Esk Head Mélange of the South Island.</p>


2021 ◽  
Author(s):  
◽  
Thomas O. H. Orr

<p>Basement rocks in the southern Tararua Range are part of the Torlesse Supergroup, possibly Late Triassic to Late Jurassic in age, and form two distinct associations. The sedimentarv association consists mainly of quartzo-feldspathic sandstone and argillite with minor olistostrome, calcareous siltstone and microsparite. The sandstone and argillite were deposited as turbidites in a mid- to outer- submarine fan environment. The sediment was derived from a heavily dissected active continental margin that was shedding sediment of mainly plutonic and metamorphic origin. The volcanic association consists mainly of metabasite and coloured argillite with minor chert and limestone. Geochemical data indicate that the metabasites were erupted in an oceanic intraplate environment. The nature of amygdules in amygdaloidal metabasites suggests eruption in less than 800m of water. Coloured argillites have two distinct origins, namely sediments formed by the degredation of basalt; and also pelagic material modified by metal-rich effluent either from hydrothermal systems associated with mid-ocean ridges or intraplate volcanism. The rocks of the volcanic association indicate formation in an environment similar to present day mid-ocean islands. Nowhere were rocks of the two associations observed to be conformable. Coupled with this, the nature of the two associations suggests that they were formed in separate environments. The following structural history is proposed: 1) Early veining; 2) Isoclinal folding and development of a NNE striking cleavage; 3) Faulting both at low and high angles to bedding, extreme amounts of which have resulted in mélange; 4) NE-SW trending close to open folds; 5) E-W trending open to gentle folds; 6) Recent faulting, predominantly NE trending strike-slip faults. The nature of the two associations and the deformational style and history supports an accretionary prism model for the development of the Torlesse Supergroup. Rocks of the southern Tararua Range show many similarities with, and probably represent a northward continuation of, the Esk Head Mélange of the South Island.</p>


2021 ◽  
pp. 19-48
Author(s):  
Gwladys T. Gaillot* ◽  
Michael L. Sweet ◽  
Manasij Santra

ABSTRACT The Eocene Tyee Formation of west central Oregon, USA, records deposition in a forearc basin. With outcrop exposures of fluvial/deltaic to shelf and submarine fan depositional environments and known sediment sourcing constrained by detrital zircon dating and mineralogy linked to the Idaho Batholith, it is possible to place deposits of the Tyee Formation in a source-to-sink context. A research program carried out by the Department of Geological Sciences at The University of Texas at Austin and ExxonMobil Research Company’s Clastic Stratigraphy Group has reconstructed the Eocene continental margin from shelf to slope to basin floor using outcrop and subsurface data. This work allows us to put observations of individual outcrops into a basin-scale context. This field trip will visit examples of depositional environments across the entire preserved source-to-sink system, but it will focus on the deep-water deposits of the Tyee Formation that range from slope channels to proximal and distal basin-floor fans. High-quality roadcuts reveal the geometry of slope channel-fills in both depositional strike and dip orientations. Thick, sand-rich medial fan deposits show vertical amalgamation and a high degree of lateral continuity of sandstones and mudstones. Distal fan facies with both classic Bouma-type turbidites and combined flow or slurry deposits are well exposed along a series of new roadcuts east of Newport, Oregon. The larger basin-scale context of the Tyee Formation is illustrated at a quarry in the northern end of the basin where the contact between the oceanic crust of the underlying Siletzia terrane and submarine fan deposits of the Tyee Formation is exposed. The Tyee Formation provides an excellent opportunity to see the facies and three-dimensional geometry of deep-water deposits, and to show how these deposits can be used to help reconstruct ancient continental margins.


2021 ◽  
Vol 62 ◽  
pp. 88-106
Author(s):  
Md. Masidul Haque ◽  
Mrinal Kanti Roy

The study illustrates the effect of tectonics, climate, and relative sea-level change on the depositional process of the Miocene Bhuban and Boka Bil Formation of Bengal Basin. Outcrop sediments of five transverse sections exposed along the axial zone of Bandarban anticline were studied. Twelve lithofacies such as Gm, Gms, Sm, ST, Sp, Sr, Sl, Sf, Sll, Fw, Fl and Fm have been identified within the successions and grouped into (i) turbidite generated, (ii) outer fan distal lobe basin plain and (iii) tide-influenced facies association. The analyses reveal that the Bhuban Formation was turbidite- generated that deposited below the continental shelf-slope environment. The Lower Bhuban Member consists of gray to brownish-gray calcareous sandstone with shale deposited under the channelized lobe of submarine fan. The Middle Bhuban Member dominated by black shale-siltstone deposited in distal turbidite lobe due to change the flow regime. The Upper Bhuban Member consists of yellow to yellowish gray, coarse to medium-grained sandstone-siltstone with black shale that deposited under channelized to nonchannelized lobes of submarine fan. The increasing sedimentation during the formation of the Upper Bhuban Member can be caused by increased the intensity of the Asian Monsoon that carried huge sediment from the Himalaya. The Boka Bil Formation was deposited under estuary to tidal flat environment. The area was uplifted during and/or after subduction of the Indian Plate beneath the Burmese Plate. The monsoonal intensity enhances sedimentation that moved prograding delta towards the south. These processes shifted depositional environment from continental shelf-slope to marginal shallow marine during deposition of the Boka Bil Formation. The continental slope aligned east-west direction and sediments likely derived from the Himalaya and Trans-Himalaya in the present geographical setup during deposition of the sediments.


2021 ◽  
Vol 91 (7) ◽  
pp. 683-709
Author(s):  
Pengfei Hou ◽  
Lesli J. Wood ◽  
Zane R. Jobe

ABSTRACT Submarine fans deposited in structurally complex settings record important information on basin evolution and tectonic–sedimentary relationships but are often poorly preserved in outcrops due to syndepositional and post depositional deformation. This study aims to understand the influence of tectonics on the deposition of the synorogenic Pennsylvanian lower Atoka submarine fan system deposited in a structurally complex foreland basin during the Ouachita orogeny. This study is a synthesis of new outcrop stratigraphic data as well as published stratigraphic and structural data. The lower Atoka crops out in the Ouachita Mountains and the southern Arkoma Basin and is divided into three structural–depositional zones: the foredeep, the wedge top, and the continental foreland. The mean paleoflow is axial, and each zone exhibits unique patterns in facies distribution. The foredeep consists of two fan systems, a large westward-prograding fan that exhibits significant longitudinal and lateral facies changes, and a small eastward-prograding fan on the western part. The wedge top consists of a westward-prograding fan that exhibits subtle longitudinal facies change. The continental foreland consists of small slope fan systems along the northern and western margins. By comparing to basin morphology and structural styles, we interpret the facies distribution patterns in the three zones as the result of different combinations of lateral structural confinement, axial and lateral sediment supply, and paleogeography. This study provides an improved and comprehensive understanding of the lower Atoka deepwater system and has implications for deciphering the tectonic–sedimentary relationships in laterally confined submarine fan systems.


Sign in / Sign up

Export Citation Format

Share Document