Tight Coupling of a Reservoir Simulator With a Transient Flow Well Model: A Field Case Application to Optimise Cyclic Production in Liquid Loading Regime for a Tight Gas Field

Author(s):  
Ombana Rasoanaivo ◽  
Jacques Danquigny ◽  
Pierre Henry ◽  
David Hopkinson ◽  
Adeline Liu ◽  
...  
2021 ◽  
pp. 1-18
Author(s):  
Yunzhao Zhang ◽  
Lianbo Zeng ◽  
Wenya Lyu ◽  
Dongsheng Sun ◽  
Shuangquan Chen ◽  
...  

Abstract The Upper Triassic Xujiahe Formation is a typical tight gas reservoir in which natural fractures determine the migration, accumulation and production capacity of tight gas. In this study, we focused on the influences of natural fractures on the tight gas migration and production. We clarified characteristics and attributes (i.e. dips, apertures, filling degree and cross-cutting relationships) of the fractures based on image logging interpretations and core descriptions. Previous studies of electron spin resonance, carbon and oxygen isotopes, homogenization temperature of fluid inclusions analysis and basin simulation were considered. This study also analysed the fracture sequences, source of fracture fillings, diagenetic sequences and tight gas enrichment stages. We obtained insight into the relationship between fracture evolution and hydrocarbon charging, particularly the effect of the apertures and intensity of natural fractures on tight gas production. We reveal that the bedding fractures are short horizontal migration channels of tight gas. The tectonic fractures with middle, high and nearly vertical angles are beneficial to tight gas vertical migration. The apertures of fractures are controlled by the direction of maximum principal stress and fracture angle. The initial gas production of the vertical wells presents a positive correlation with the fracture abundance, and the intensity and aperture of fractures are the fundamental factors that determine the tight gas production. With these findings, this study is expected to guide the future exploration and development of tight gas with similar geological backgrounds.


2016 ◽  
Vol 57 (7) ◽  
pp. 1064-1077 ◽  
Author(s):  
Ding Xiaoqi ◽  
Yang Peng ◽  
Han Meimei ◽  
Chen Yang ◽  
Zhang Siyang ◽  
...  

2021 ◽  
Author(s):  
Mohammad Heidari ◽  
Christopher Istchenko ◽  
William Bailey ◽  
Terry Stone

Abstract The paper examines new horizontal drift-flux correlations for their ability to accurately model phase flow rates and pressure drops in horizontal and undulating wells that are part of a Steam-Assisted Gravity Drainage (SAGD) field operation. Pressure profiles within each well correlate to the overall performance of the pair. SAGD is a low-pressure process that is sensitive to reservoir heterogeneity and other factors, hence accurate simulation of in situ wellbore pressures is critical for both mitigating uneven steam chamber evolution and optimizing wellbore design and operation. Recently published horizontal drift-flux correlations have been implemented in a commercial thermal reservoir simulator with a multi-segment well model. Valid for horizontally drilled wells with undulations, they complement previously reported drift-flux models developed for vertical and inclined wells down to approximately 5 degrees from horizontal. The formulation of these correlations has a high degree of nonlinearity. These models are tested in simulations of SAGD field operations. First, an overview of drift-flux models is discussed. This differentiates those based on vertical flow with gravity segregation to those that model horizontal flow with stratified and slug flow regimes. Second, the most recent and significant drift-flux correlation by Bailey et al. (2018, and hereafter referred to as Bailey-Tang-Stone) was robustly designed to be used in the well model of a reservoir simulator, can handle all inclination angles and was optimized to experimental data from the largest available databases to date. This and earlier drift-flux models are reviewed as to their strengths and weaknesses. Third, governing equations and implementation details are given of the Bailey-Tang-Stone model. Fourth, six case studies are presented that illustrate homogeneous and drift-flux flow model differences for various well scenarios.


2016 ◽  
pp. 497-531
Author(s):  
Mark A. Chapin ◽  
Nicholas W. Brandon ◽  
Gustavo Ugueto ◽  
Jennifer K. Bobich ◽  
Carolyn H. Fleming ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document