scholarly journals The use of high-dose cervical spinal cord stimulation in the treatment of chronic upper extremity and neck pain

2019 ◽  
Vol 10 ◽  
pp. 109
Author(s):  
Trey A. Baird ◽  
Chris S. Karas

Background: Dorsal column spinal cord stimulation is used for the treatment of chronic neuropathic pain of the axial spine and extremities. Recently, high-dose (HD) thoracic dorsal column stimulation for paresthesias has been successful. This study evaluates the utility of HD stimulation in the cervical spine for managing upper neck and upper extremity pain and paresthesias. Methods: Three patients suffering from cervical and upper extremity chronic pain were assessed. Each underwent a two-stage process that included a trial period, followed by permanent stimulator implantation. Therapy included the latest HD stimulation settings including a pulse width of 90 μs, a frequency setting of 1000 Hz, and an amplitude range of 1.5 amps–2.0 amps. Pain relief was measured utilizing relative percent pain improvement as self-reported by each patient before and after surgery. Results: After permanent implantation, (range 15–21 months), all three patients continued to experience persistent pain and paresthesia relief (70%–90%). Conclusions: In three patients, HD cervical spinal cord stimulation successfully controlled upper extremity chronic pain/paresthesias.

2017 ◽  
Vol 117 (1) ◽  
pp. 136-147 ◽  
Author(s):  
Nathan D. Crosby ◽  
John J. Janik ◽  
Warren M. Grill

Kilohertz-frequency spinal cord stimulation (KHF-SCS) is a potential paresthesia-free treatment for chronic pain. However, the effects of KHF-SCS on spinal dorsal column (DC) axons and its mechanisms of action remain unknown. The objectives of this study were to quantify activation and conduction block of DC axons by KHF-SCS across a range of frequencies (1, 5, 10, or 20 kHz) and waveforms (biphasic pulses or sinusoids). Custom platinum electrodes delivered SCS to the T10/T11 dorsal columns of anesthetized male Sprague-Dawley rats. Single DC axons and compound action potentials were recorded during KHF-SCS to evaluate SCS-evoked activity. Responses to KHF-SCS in DC axons included brief onset firing, slowly accommodating asynchronous firing, and conduction block. The effects of KHF-SCS mostly occurred well above motor thresholds, but isolated units were activated at amplitudes shown to reduce behavioral sensitivity in rats. Activity evoked by SCS was similar across a range of frequencies (5–20 kHz) and waveforms (biphasic and sinusoidal). Stimulation at 1-kHz SCS evoked more axonal firing that was also more phase-synchronized to the SCS waveform, but only at amplitudes above motor threshold. These data quantitatively characterize the central nervous system activity that may modulate pain perception and paresthesia, and thereby provide a foundation for continued investigation of the mechanisms of KHF-SCS and its optimization as a therapy for chronic pain. Given the asynchronous and transient nature of DC activity, it is unlikely that the same mechanisms underlying conventional SCS (i.e., persistent, periodic DC activation) apply to KHF-SCS. NEW & NOTEWORTHY Kilohertz-frequency spinal cord stimulation (KHF-SCS) is a new mode of SCS that may offer better pain relief than conventional SCS. However, the mechanism of action is poorly characterized, especially the effects of stimulation on dorsal column (DC) axons, which are the primary target of stimulation. This study provides the first recordings of single DC axons during KHF-SCS to quantify DC activity that has the potential to mediate the analgesic effects of KHF-SCS.


2007 ◽  
Vol 2;10 (3;2) ◽  
pp. 305-311
Author(s):  
Ricardo Vallejo

Electrical spinal neuromodulation in the form of spinal cord stimulation is currently used for treating chronic painful conditions such as complex regional pain syndrome, diabetic neuropathy, postherpetic neuralgia, peripheral ischemia, low back pain, and other conditions refractory to more conservative treatments. To date, there are very few published reports documenting the use of spinal cord stimulation in the treatment of head/neck and upper limb pain. This paper reports a case series of 5 consecutive patients outlining the use of spinal cord stimulation to treat upper extremity pain. All subjects had previously undergone cervical fusion surgery to treat chronic neck and upper limb pain. Patients were referred following failure of the surgery to manage their painful conditions. Spinal cord stimulators were placed in the cervical epidural space through a thoracic needle placement. Stimulation parameters were adjusted to capture as much of the painful area(s) as possible. In total, 4 out of 5 patients moved to implantation. In all cases, patients reported significant (70–90%) reductions in pain, including axial neck pain and upper extremity pain. Interestingly, 2 patients with associated headache and lower extremity pain obtained relief after paresthesia-steering reportedly covered those areas. Moreover, 2 patients reported that cervical spinal cord stimulation significantly improved axial low back pain. Patients continue to report excellent pain relief up to 9 months following implantation. This case series documents the successful treatment of neck and upper extremity pain following unsuccessful cervical spine fusion surgery. Given this initial success, prospective, controlled studies are warranted to more adequately assess the long term utility and cost effectiveness of electrical neuromodulation treatment of chronic neck and upper extremity pain. Key words: spinal cord stimulator, cervical, neck pain, radicular pain, axial pain, headache, leg pain


2013 ◽  
Vol 119 (2) ◽  
pp. 422-432 ◽  
Author(s):  
Ronen Shechter ◽  
Fei Yang ◽  
Qian Xu ◽  
Yong-Kwan Cheong ◽  
Shao-Qiu He ◽  
...  

Abstract Background: Spinal cord stimulation (SCS) is a useful neuromodulatory technique for treatment of certain neuropathic pain conditions. However, the optimal stimulation parameters remain unclear. Methods: In rats after L5 spinal nerve ligation, the authors compared the inhibitory effects on mechanical hypersensitivity from bipolar SCS of different intensities (20, 40, and 80% motor threshold) and frequencies (50, 1 kHz, and 10 kHz). The authors then compared the effects of 1 and 50 Hz dorsal column stimulation at high- and low-stimulus intensities on conduction properties of afferent Aα/β-fibers and spinal wide-dynamic–range neuronal excitability. Results: Three consecutive daily SCS at different frequencies progressively inhibited mechanical hypersensitivity in an intensity-dependent manner. At 80% motor threshold, the ipsilateral paw withdrawal threshold (% preinjury) increased significantly from pre-SCS measures, beginning with the first day of SCS at the frequencies of 1 kHz (50.2 ± 5.7% from 23.9 ± 2.6%, n = 19, mean ± SEM) and 10 kHz (50.8 ± 4.4% from 27.9 ± 2.3%, n = 17), whereas it was significantly increased beginning on the second day in the 50 Hz group (38.9 ± 4.6% from 23.8 ± 2.1%, n = 17). At high intensity, both 1 and 50 Hz dorsal column stimulation reduced Aα/β-compound action potential size recorded at the sciatic nerve, but only 1 kHz stimulation was partially effective at the lower intensity. The number of actions potentials in C-fiber component of wide-dynamic–range neuronal response to windup-inducing stimulation was significantly decreased after 50 Hz (147.4 ± 23.6 from 228.1 ± 39.0, n = 13), but not 1 kHz (n = 15), dorsal column stimulation. Conclusions: Kilohertz SCS attenuated mechanical hypersensitivity in a time course and amplitude that differed from conventional 50 Hz SCS, and may involve different peripheral and spinal segmental mechanisms.


2013 ◽  
Vol 17 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Timothy R. Deer ◽  
Ioannis M. Skaribas ◽  
Nameer Haider ◽  
John Salmon ◽  
Chong Kim ◽  
...  

2017 ◽  
pp. 195-204
Author(s):  
Amitabh Gulati

Background: Radiation therapy (RT) has become a mainstay in the treatment of various malignancies. Unfortunately, a potential side effect of this modality is radiation-induced neuritis. The time-course is varied and the emergence of pain syndromes can be delayed by several years after the completion of treatment. Risk factors include the total radiation dose, fractionation schedule, and radiation field size. Spinal cord stimulation (SCS) may have an important role in attenuating the symptoms of radiation-induced neuritis. Objectives: We aim to characterize a case series of oncologic patients who underwent SCS to treat iatrogenic radiation neuritis of the lumbosacral nerve roots. Study Design: This is a retrospective review of 4 cases of patients who were eligible for either intrathecal drug delivery or SCS (magnetic resonance imaging [MRI] conditional devices for spine surveillance), of which each patient elected to have a SCS trial and possible permanent implantation. Setting: The data were collected at a major cancer center in the US. Methods: In this case series, we present 4 patients with radiation-induced neuropathy. For each patient, we describe the use of SCS, which uses electric impulse generation, in an effort to treat the patient’s symptoms. To assess for efficacy, we compare pre- and post-procedure numerical rating scale (NRS) pain scores and post-procedure pain medication requirements. Results: Each patient had marked improvement in their pain (> 50%) during the trial lead placement and proceeded to the permanent implant. In subsequent months and years, the patients decreased their opioid utilization and reported an improvement in their overall pain. Limitations: This case series is a small sample size of heterogeneous malignancies with radiation treatment to the spine. Conclusions: Radiation-induced neuritis remains a severe and limiting outcome that some patients must live with after RT. Survivors of malignancy have often found this pathology to severely impact their quality of life, and it is difficult to treat. We have described the utilization of spinal cord neuromodulation as an effective treatment modality in the spine tumor patient population. Further research is needed to maximize the benefit and ensure appropriate case selection in the future. Key words: Radiation neuritis, radiation neuropathy, oncologic lumbar radiculopathy, spinal cord stimulation, neuromodulation, dorsal column stimulation, spinal tumor pain, MRI conditional spinal cord stimulation


Sign in / Sign up

Export Citation Format

Share Document