Cervical Spinal Cord Stimulation Using Monophasic Burst Waveform for Axial Neck and Upper Extremity Radicular Pain: A Preliminary Observational Study

2019 ◽  
Vol 23 (5) ◽  
pp. 680-686 ◽  
Author(s):  
Jay S. Grider ◽  
Michael Harned
2016 ◽  
Vol 20 (3) ◽  
pp. 263-268 ◽  
Author(s):  
Sameah Haider ◽  
Stephane Owusu-Sarpong ◽  
Maria Peris Celda ◽  
Meghan Wilock ◽  
Julia Prusik ◽  
...  

2007 ◽  
Vol 2;10 (3;2) ◽  
pp. 305-311
Author(s):  
Ricardo Vallejo

Electrical spinal neuromodulation in the form of spinal cord stimulation is currently used for treating chronic painful conditions such as complex regional pain syndrome, diabetic neuropathy, postherpetic neuralgia, peripheral ischemia, low back pain, and other conditions refractory to more conservative treatments. To date, there are very few published reports documenting the use of spinal cord stimulation in the treatment of head/neck and upper limb pain. This paper reports a case series of 5 consecutive patients outlining the use of spinal cord stimulation to treat upper extremity pain. All subjects had previously undergone cervical fusion surgery to treat chronic neck and upper limb pain. Patients were referred following failure of the surgery to manage their painful conditions. Spinal cord stimulators were placed in the cervical epidural space through a thoracic needle placement. Stimulation parameters were adjusted to capture as much of the painful area(s) as possible. In total, 4 out of 5 patients moved to implantation. In all cases, patients reported significant (70–90%) reductions in pain, including axial neck pain and upper extremity pain. Interestingly, 2 patients with associated headache and lower extremity pain obtained relief after paresthesia-steering reportedly covered those areas. Moreover, 2 patients reported that cervical spinal cord stimulation significantly improved axial low back pain. Patients continue to report excellent pain relief up to 9 months following implantation. This case series documents the successful treatment of neck and upper extremity pain following unsuccessful cervical spine fusion surgery. Given this initial success, prospective, controlled studies are warranted to more adequately assess the long term utility and cost effectiveness of electrical neuromodulation treatment of chronic neck and upper extremity pain. Key words: spinal cord stimulator, cervical, neck pain, radicular pain, axial pain, headache, leg pain


2019 ◽  
Vol 10 ◽  
pp. 109
Author(s):  
Trey A. Baird ◽  
Chris S. Karas

Background: Dorsal column spinal cord stimulation is used for the treatment of chronic neuropathic pain of the axial spine and extremities. Recently, high-dose (HD) thoracic dorsal column stimulation for paresthesias has been successful. This study evaluates the utility of HD stimulation in the cervical spine for managing upper neck and upper extremity pain and paresthesias. Methods: Three patients suffering from cervical and upper extremity chronic pain were assessed. Each underwent a two-stage process that included a trial period, followed by permanent stimulator implantation. Therapy included the latest HD stimulation settings including a pulse width of 90 μs, a frequency setting of 1000 Hz, and an amplitude range of 1.5 amps–2.0 amps. Pain relief was measured utilizing relative percent pain improvement as self-reported by each patient before and after surgery. Results: After permanent implantation, (range 15–21 months), all three patients continued to experience persistent pain and paresthesia relief (70%–90%). Conclusions: In three patients, HD cervical spinal cord stimulation successfully controlled upper extremity chronic pain/paresthesias.


2021 ◽  
pp. 1-7
Author(s):  
Allan D. Levi ◽  
Jan M. Schwab

The corticospinal tract (CST) is the preeminent voluntary motor pathway that controls human movements. Consequently, long-standing interest has focused on CST location and function in order to understand both loss and recovery of neurological function after incomplete cervical spinal cord injury, such as traumatic central cord syndrome. The hallmark clinical finding is paresis of the hands and upper-extremity function with retention of lower-extremity movements, which has been attributed to injury and the sparing of specific CST fibers. In contrast to historical concepts that proposed somatotopic (laminar) CST organization, the current narrative summarizes the accumulated evidence that 1) there is no somatotopic organization of the corticospinal tract within the spinal cord in humans and 2) the CST is critically important for hand function. The evidence includes data from 1) tract-tracing studies of the central nervous system and in vivo MRI studies of both humans and nonhuman primates, 2) selective ablative studies of the CST in primates, 3) evolutionary assessments of the CST in mammals, and 4) neuropathological examinations of patients after incomplete cervical spinal cord injury involving the CST and prominent arm and hand dysfunction. Acute traumatic central cord syndrome is characterized by prominent upper-extremity dysfunction, which has been falsely predicated on pinpoint injury to an assumed CST layer that specifically innervates the hand muscles. Given the evidence surveyed herein, the pathophysiological mechanism is most likely related to diffuse injury to the CST that plays a critically important role in hand function.


2018 ◽  
Vol 22 (3) ◽  
pp. 347-354 ◽  
Author(s):  
Yangyang Xu ◽  
Peng Li ◽  
Shizhen Zhang ◽  
Yi Wang ◽  
Xiaoyan Zhao ◽  
...  

Neurocirugía ◽  
2007 ◽  
Vol 18 (1) ◽  
Author(s):  
B. Clavo ◽  
F. Robaina ◽  
L. Catalá ◽  
M. Lloret ◽  
B. Pinar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document