OCT сharacteristics of morphological types of retinal pigment epithelium in nonexudative age-related macular degeneration

Author(s):  
M.H. Durzhinskaya ◽  
◽  
M.V. Budzinskaya ◽  
M.A. Karpilova ◽  
◽  
...  
2021 ◽  
Vol 22 (16) ◽  
pp. 8387
Author(s):  
Alexa Klettner ◽  
Johann Roider

(1) Background: Inflammation is a major pathomechanism in the development and progression of age-related macular degeneration (AMD). The retinal pigment epithelium (RPE) may contribute to retinal inflammation via activation of its Toll-like receptors (TLR). TLR are pattern recognition receptors that detect the pathogen- or danger-associated molecular pattern. The involvement of TLR activation in AMD is so far not understood. (2) Methods: We performed a systematic literature research, consulting the National Library of Medicine (PubMed). (3) Results: We identified 106 studies, of which 54 were included in this review. Based on these studies, the current status of TLR in AMD, the effects of TLR in RPE activation and of the interaction of TLR activated RPE with monocytic cells are given, and the potential of TLR activation in RPE as part of the AMD development is discussed. (4) Conclusion: The activation of TLR2, -3, and -4 induces a profound pro-inflammatory response in the RPE that may contribute to (long-term) inflammation by induction of pro-inflammatory cytokines, reducing RPE function and causing RPE cell degeneration, thereby potentially constantly providing new TLR ligands, which could perpetuate and, in the long run, exacerbate the inflammatory response, which may contribute to AMD development. Furthermore, the combined activation of RPE and microglia may exacerbate neurotoxic effects.


2012 ◽  
Vol 153 (1) ◽  
pp. 120-127.e2 ◽  
Author(s):  
Elsbeth J.T. van Zeeburg ◽  
Kristel J.M. Maaijwee ◽  
Tom O.A.R. Missotten ◽  
Heinrich Heimann ◽  
Jan C. van Meurs

2021 ◽  
Author(s):  
Martin Hammer ◽  
Juliane Jakob-Girbig ◽  
Linda Schwanengel ◽  
Christine A. Curcio ◽  
Somar Hasan ◽  
...  

AbstractPurposeTo observe changes of the retinal pigment epithelium (RPE) on the transition from dysmorphia to atrophy in age related macular degeneration (AMD) by fluorescence lifetime imaging ophthalmoscopy (FLIO).MethodsMultimodal imaging including color fundus photography (CFP), optical coherence tomography (OCT), fundus autofluorescence (FAF) imaging, and FLIO was performed in 40 eyes of 37 patients with intermediate AMD and no evidence for geographic atrophy or macular neovascularization) (mean age: 74.2±7.0 years). Twenty-three eyes were followed for 28.3±18.3 months. Seven eyes had a second follow up after 46.6±9.0 months. Thickened RPE on OCT, hyperpigmentation on CFP, and migrated RPE, seen as hyperreflective foci (HRF) on OCT, were identified. Fluorescence lifetimes in two spectral channels (SSC: 500-560 nm, LSC: 560-720 nm) as well as emission spectrum intensity ratio (ESIR) of the lesions were measured by FLIO.ResultsAs hyperpigmented areas form and RPE migrates into the retina, FAF lifetimes lengthen and ESRI of RPE cells increase. Thickened RPE showed lifetimes of 256±49 ps (SSC) and 336±35 ps (LSC) and an ESIR of 0.552±0.079. For hyperpigmentation, these values were 317±68 ps (p<0.001), 377±56 ps (p<0.001), and 0.609±0.081 (p=0.001), respectively, and for HRF 337±79 ps (p<0.001), 414±50 ps (p<0.001), and 0.654±0.075 (p<0.001).ConclusionsIn the process of RPE degeneration, comprising different steps of dysmorphia, hyperpigmentation, and migration, lengthening of FAF lifetimes and a hypsochromic shift of emission spectra can be observed by FLIO. Thus, FLIO might provide early biomarkers for AMD progression and contribute to our understanding of RPE pathology.


Sign in / Sign up

Export Citation Format

Share Document