scholarly journals DEVICE FOR CHECKING AND CALIBRATING INDICATORS OF THE RESERVE TIME OF CONSCIOUSNESS PRESERVATION BY A PERSON IN CONDITIONS OF HYPOXIA

Author(s):  
Н.А. Марков

Для обеспечения надежного функционирования индикаторов резервного времени сохранения сознания человеком в условиях гипоксии разработан специальный прибор для их поверки и калибровки. Прибор включает регулятор давления, табло для индикации эталонного давления, табло для индикации резервного времени сохранения сознания, шланг с разъемом для соединения с датчиком барометрического давления, компрессор, регулятор давления и микропроцессор. Разработанный прибор обеспечивает возможность контроля работоспособности средств коллективного и индивидуального информирования экипажа пассажиров воздушных судов о величине предельного резервного времени сохранения сознания в чрезвычайных ситуациях высотных полетов. To ensure the reliable functioning of the indicators of the reserve time of consciousness preservation by a person in conditions of hypoxia, a special device for their verification and calibration has been developed. The device includes a pressure regulator, a tableau for indicating the reference pressure, a tableau for indicating the standby time of consciousness, a hose with a connector for connecting to the barometric pressure sensor, a compressor, a pressure regulator and a microprocessor. The developed device provides the ability to monitor the performance of the means of collective and individual informing the crew of aircraft passengers about the value of the maximum reserve time for maintaining consciousness in emergency situations of high-altitude flights.

2012 ◽  
Vol 112 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Claire de Bisschop ◽  
Jean-Benoit Martinot ◽  
Gil Leurquin-Sterk ◽  
Vitalie Faoro ◽  
Hervé Guénard ◽  
...  

Lung diffusing capacity has been reported variably in high-altitude newcomers and may be in relation to different pulmonary vascular resistance (PVR). Twenty-two healthy volunteers were investigated at sea level and at 5,050 m before and after random double-blind intake of the endothelin A receptor blocker sitaxsentan (100 mg/day) vs. a placebo during 1 wk. PVR was estimated by Doppler echocardiography, and exercise capacity by maximal oxygen uptake (V̇o2 max). The diffusing capacities for nitric oxide (DLNO) and carbon monoxide (DLCO) were measured using a single-breath method before and 30 min after maximal exercise. The membrane component of DLCO (Dm) and capillary volume (Vc) was calculated with corrections for hemoglobin, alveolar volume, and barometric pressure. Altitude exposure was associated with unchanged DLCO, DLNO, and Dm but a slight decrease in Vc. Exercise at altitude decreased DLNO and Dm. Sitaxsentan intake improved V̇o2 max together with an increase in resting and postexercise DLNO and Dm. Sitaxsentan-induced decrease in PVR was inversely correlated to DLNO. Both DLCO and DLNO were correlated to V̇o2 max at sea level ( r = 0.41–0.42, P < 0.1) and more so at altitude ( r = 0.56–0.59, P < 0.05). Pharmacological pulmonary vasodilation improves the membrane component of lung diffusion in high-altitude newcomers, which may contribute to exercise capacity.


2015 ◽  
Vol 118 (5) ◽  
pp. 509-519 ◽  
Author(s):  
Andrew M. Luks

With the growing interest in adventure travel and the increasing ease and affordability of air, rail, and road-based transportation, increasing numbers of individuals are traveling to high altitude. The decline in barometric pressure and ambient oxygen tensions in this environment trigger a series of physiologic responses across organ systems and over a varying time frame that help the individual acclimatize to the low oxygen conditions but occasionally lead to maladaptive responses and one or several forms of acute altitude illness. The goal of this Physiology in Medicine article is to provide information that providers can use when counseling patients who present to primary care or travel medicine clinics seeking advice about how to prevent these problems. After discussing the primary physiologic responses to acute hypoxia from the organ to the molecular level in normal individuals, the review describes the main forms of acute altitude illness—acute mountain sickness, high-altitude cerebral edema, and high-altitude pulmonary edema—and the basic approaches to their prevention and treatment of these problems, with an emphasis throughout on the physiologic basis for the development of these illnesses and their management.


Author(s):  
Cynthia M. Beall ◽  
Kingman P. Strohl

Biological anthropologists aim to explain the hows and whys of human biological variation using the concepts of evolution and adaptation. High-altitude environments provide informative natural laboratories with the unique stress of hypobaric hypoxia, which is less than usual oxygen in the ambient air arising from lower barometric pressure. Indigenous populations have adapted biologically to their extreme environment with acclimatization, developmental adaptation, and genetic adaptation. People have used the East African and Tibetan Plateaus above 3,000 m for at least 30,000 years and the Andean Plateau for at least 12,000 years. Ancient DNA shows evidence that the ancestors of modern highlanders have used all three high-altitude areas for at least 3,000 years. It is necessary to examine the differences in biological processes involved in oxygen exchange, transport, and use among these populations. Such an approach compares oxygen delivery traits reported for East African Amhara, Tibetans, and Andean highlanders with one another and with short-term visitors and long-term upward migrants in the early or later stages of acclimatization to hypoxia. Tibetan and Andean highlanders provide most of the data and differ quantitatively in biological characteristics. The best supported difference is the unelevated hemoglobin concentration of Tibetans and Amhara compared with Andean highlanders as well as short- and long-term upward migrants. Moreover, among Tibetans, several features of oxygen transfer and oxygen delivery resemble those of short-term acclimatization, while several features of Andean highlanders resemble the long-term responses. Genes and molecules of the oxygen homeostasis pathways contribute to some of the differences.


1989 ◽  
Vol 67 (1) ◽  
pp. 141-146 ◽  
Author(s):  
P. Bouissou ◽  
J. P. Richalet ◽  
F. X. Galen ◽  
M. Lartigue ◽  
P. Larmignat ◽  
...  

The renin-aldosterone system may be depressed in subjects exercising at high altitude, thereby preventing excessive angiotensin I (ANG I) and aldosterone levels, which could favor the onset of acute mountain sickness. The role of beta-adrenoceptors in hormonal responses to hypoxia was investigated in 12 subjects treated with a nonselective beta-blocker, pindolol. The subjects performed a standardized maximal bicycle ergometer exercise with (P) and without (C) acute pindolol treatment (15 mg/day) at sea level, as well as during a 5-day period at high altitude (4,350 m, barometric pressure 450 mmHg). During sea-level exercise, pindolol caused a reduction in plasma renin activity (PRA, 2.83 +/- 0.35 vs. 5.13 +/- 0.7 ng ANG I.ml-1.h-1, P less than 0.01), an increase in plasma alpha-atrial natriuretic factor (alpha-ANF) level (23.1 +/- 2.9 (P) vs. 10.4 +/- 1.5 (C) pmol/1, P less than 0.01), and no change in plasma aldosterone concentration [0.50 +/- 0.04 (P) vs. 0.53 +/- 0.03 (C) nmol/1]. Compared with sea-level values, PRA (3.45 +/- 0.7 ng ANG I.ml-1.h-1) and PA (0.39 +/- 0.03 nmol/1) were significantly lower (P less than 0.05) during exercise at high altitude. alpha-ANF was not affected by hypoxia. When beta-blockade was achieved at high altitude, exercise-induced elevation in PRA was completely abolished, but no additional decline in PA occurred. Plasma norepinephrine and epinephrine concentrations tended to be lower during maximal exercise at altitude; however, these differences were not statistically significant. Our results provide further evidence that hypoxia has a suppressive effect on the renin-aldosterone system. However, beta-adrenergic mechanisms do not appear to be responsible for inhibition of renin secretion at high altitude.


Sign in / Sign up

Export Citation Format

Share Document