Low cerebral activity and cerebral oxygenation during immediate transition in term neonates - a prospective observational study

Author(s):  
Anna Tamussino
Resuscitation ◽  
2016 ◽  
Vol 103 ◽  
pp. 49-53 ◽  
Author(s):  
Anna Tamussino ◽  
Berndt Urlesberger ◽  
Nariae Baik ◽  
Bernhard Schwaberger ◽  
Corinna Binder-Heschl ◽  
...  

Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Chiara Robba ◽  
◽  
Lorenzo Ball ◽  
Denise Battaglini ◽  
Danilo Cardim ◽  
...  

Abstract Background In COVID-19 patients with acute respiratory distress syndrome (ARDS), the effectiveness of ventilatory rescue strategies remains uncertain, with controversial efficacy on systemic oxygenation and no data available regarding cerebral oxygenation and hemodynamics. Methods This is a prospective observational study conducted at San Martino Policlinico Hospital, Genoa, Italy. We included adult COVID-19 patients who underwent at least one of the following rescue therapies: recruitment maneuvers (RMs), prone positioning (PP), inhaled nitric oxide (iNO), and extracorporeal carbon dioxide (CO2) removal (ECCO2R). Arterial blood gas values (oxygen saturation [SpO2], partial pressure of oxygen [PaO2] and of carbon dioxide [PaCO2]) and cerebral oxygenation (rSO2) were analyzed before (T0) and after (T1) the use of any of the aforementioned rescue therapies. The primary aim was to assess the early effects of different ventilatory rescue therapies on systemic and cerebral oxygenation. The secondary aim was to evaluate the correlation between systemic and cerebral oxygenation in COVID-19 patients. Results Forty-five rescue therapies were performed in 22 patients. The median [interquartile range] age of the population was 62 [57–69] years, and 18/22 [82%] were male. After RMs, no significant changes were observed in systemic PaO2 and PaCO2 values, but cerebral oxygenation decreased significantly (52 [51–54]% vs. 49 [47–50]%, p < 0.001). After PP, a significant increase was observed in PaO2 (from 62 [56–71] to 82 [76–87] mmHg, p = 0.005) and rSO2 (from 53 [52–54]% to 60 [59–64]%, p = 0.005). The use of iNO increased PaO2 (from 65 [67–73] to 72 [67–73] mmHg, p = 0.015) and rSO2 (from 53 [51–56]% to 57 [55–59]%, p = 0.007). The use of ECCO2R decreased PaO2 (from 75 [75–79] to 64 [60–70] mmHg, p = 0.009), with reduction of rSO2 values (59 [56–65]% vs. 56 [53–62]%, p = 0.002). In the whole population, a significant relationship was found between SpO2 and rSO2 (R = 0.62, p < 0.001) and between PaO2 and rSO2 (R0 0.54, p < 0.001). Conclusions Rescue therapies exert specific pathophysiological mechanisms, resulting in different effects on systemic and cerebral oxygenation in critically ill COVID-19 patients with ARDS. Cerebral and systemic oxygenation are correlated. The choice of rescue strategy to be adopted should take into account both lung and brain needs. Registration The study protocol was approved by the ethics review board (Comitato Etico Regione Liguria, protocol n. CER Liguria: 23/2020).


2020 ◽  
Vol 8 ◽  
Author(s):  
Ilia Bresesti ◽  
Marlies Bruckner ◽  
Christian Mattersberger ◽  
Nariae Baik-Schneditz ◽  
Bernhard Schwaberger ◽  
...  

2019 ◽  
Vol 24 (Supplement_2) ◽  
pp. e53-e54
Author(s):  
Souvik Mitra ◽  
Ege Babadagli ◽  
Helen McCord ◽  
Averie DePalma ◽  
Walid El-Naggar ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jurate Navikiene ◽  
Ernestas Virsilas ◽  
Ramune Vankeviciene ◽  
Arunas Liubsys ◽  
Augustina Jankauskiene

Abstract Background Patent ductus arteriosus (PDA) is common among preterm neonates. Haemodynamically significant ductus arteriosus (hsPDA) can cause ductal steal and contribute to poor outcomes. Our aim was to evaluate ductus arteriosus patency and significance using two-site near-infrared spectroscopy (NIRS) measurements in preterm infants older than 72 h as a supplemental tool to echocardiography. Methods In this prospective observational study, 123 preterm infants (gestational age (GA) < 32 weeks, birth weight < 1500 g) were enrolled. Sixty-four newborns had closed ductus arteriosus (noPDA), and 41 and 18 patients were assigned to the PDA and hsPDA groups, respectively, per predefined echocardiographic criteria. Cerebral and renal oxygenation were assessed during NIRS monitoring. Results A higher renal mean (±SD) regional tissue oxygen saturation (rSpO2) (76.7 (±7.64)) was detected in the noPDA group than in the PDA (71.7 (±9.02)) and hsPDA (67.4 (±13.48)) groups (p < 0.001). Renal fractional tissue oxygen extraction (FTOE) (0.18 (±0.079)) was lower in the noPDA group than in the PDA (0.23 (±0.092)) and hsPDA (0.24 (±0.117))0.117 groups (p = 0.002). Cerebral oxygenation was significantly lower in the hsPDA group (77.0 (±5.16)) than in the noPDA (79.3 (±2.45)) and PDA (79.7 (±2.27)) groups (p = 0.004). There was no significant difference in cerebral fractional tissue oxygen extraction (FTOE) between any of the groups. Conclusions Our results suggest that renal oxygenation is affected by ductus patency in preterm infants older than 72 h. Significant differences in cerebral oxygenation were observed between the hsPDA group and the PDA and noPDA groups. Trial registration ClinicalTrials.gov Identifier: NCT04295395. Registration date: 4 March 2020. This study was retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04295395.


Sign in / Sign up

Export Citation Format

Share Document