Response Surface Methodology Assisted Development and Optimization of DB213 In Situ Thermosensitive Gel for Intranasal Delivery to the Central Nervous System

Author(s):  
Qianwen Wang
2022 ◽  
Vol 12 ◽  
Author(s):  
Johannes Flamm ◽  
Sunniva Hartung ◽  
Stella Gänger ◽  
Frank Maigler ◽  
Claudia Pitzer ◽  
...  

We have recently developed a region-specific catheter-based intranasal application method in mice by using CT scan-based 3D cast models of the murine nose (DOI: 10.2376/0005-9366-17,102). This technique is able to specifically deliver drugs to the olfactory region or to the respiratory region only. Thereby, intranasally administered drugs could be delivered either via neuronal connections to the central nervous system or via the well-perfused rostral parts of the nasal mucosa to the systemic circulation. In the present study, we transferred successfully this novel delivery technique to C57Bl/6 mice and determined parameters such as insertions depth of the catheter and maximum delivery volume in dependence to the weight of the mouse. Breathing was simulated to verify that the volume remains at the targeted area. A step-by-step procedure including a video is presented to adopt this technique for standardized and reproducible intranasal central nervous system (CNS) delivery studies (DOI: 10.3390/pharmaceutics13111904).


2018 ◽  
Vol 27 (3) ◽  
pp. 501-514 ◽  
Author(s):  
Carlos Galeano ◽  
Zhifang Qiu ◽  
Anuja Mishra ◽  
Steven L. Farnsworth ◽  
Jacob J. Hemmi ◽  
...  

Intranasal administration is a promising route of delivery of stem cells to the central nervous system (CNS). Reports on this mode of stem cell delivery have not yet focused on the route across the cribriform plate by which cells move from the nasal cavity into the CNS. In the current experiments, human mesenchymal stem cells (MSCs) were isolated from Wharton’s jelly of umbilical cords and were labeled with extremely bright quantum dots (QDs) in order to track the cells efficiently. At 2 h after intranasal delivery in immunodeficient mice, the labeled cells were found under the olfactory epithelium, crossing the cribriform plate adjacent to the fila olfactoria, and associated with the meninges of the olfactory bulb. At all times, the cells were separate from actual nerve tracts; this location is consistent with them being in the subarachnoid space (SAS) and its extensions through the cribriform plate into the nasal mucosa. In their location under the olfactory epithelium, they appear to be within an expansion of a potential space adjacent to the turbinate bone periosteum. Therefore, intranasally administered stem cells appear to cross the olfactory epithelium, enter a space adjacent to the periosteum of the turbinate bones, and then enter the SAS via its extensions adjacent to the fila olfactoria as they cross the cribriform plate. These observations should enhance understanding of the mode by which stem cells can reach the CNS from the nasal cavity and may guide future experiments on making intranasal delivery of stem cells efficient and reproducible.


1998 ◽  
Vol 73 (1) ◽  
pp. 109-119 ◽  
Author(s):  
Sabina Macchi ◽  
Fabrizio Maggi ◽  
Concetta Di Iorio ◽  
Alessandro Poli ◽  
Mauro Bendinelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document