Energetic Formulation of Large-Deformation Poroelasticity for Fluid Injection Simulation into Deep Underground Formations

Author(s):  
Mina Karimi
2022 ◽  
Author(s):  
Mina Karimi ◽  
Mehrdad Massoudi ◽  
Noel Walkington ◽  
Matteo Pozzi ◽  
Kaushik Dayal

The modeling of coupled fluid transport and deformation in a porous medium is essential to predict the various geomechanical process such as CO2 sequestration, hydraulic fracturing, and so on. Current applications of interest, for instance, that include fracturing or damage of the solid phase, require a nonlinear description of the large deformations that can occur. This paper presents a variational energy-based continuum mechanics framework to model large-deformation poroelasticity. The approach begins from the total free energy density that is additively composed of the free energy of the components. A variational procedure then provides the balance of momentum, fluid transport balance, and pressure relations. A numerical approach based on finite elements is applied to analyze the behavior of saturated and unsaturated porous media using a nonlinear constitutive model for the solid skeleton. Examples studied include the Terzaghi and Mandel problems; a gas-liquid phase-changing fluid; multiple immiscible gases; and unsaturated systems where we model injection of fluid into soil. The proposed variational approach can potentially have advantages for numerical methods as well as for combining with data-driven models in a Bayesian framework.


2020 ◽  
Author(s):  
Changlun Sun ◽  
Guichen Li ◽  
Gomah Mohamed Elgharib ◽  
Jiahui Xu ◽  
Haoyu Rong

Abstract In deep underground engineering, the creep behaviors of soft rocks have been widely investigated to help understand the mechanism of the time-dependent large deformation and failure of underground engineering structures. However, rocks were used to be regarded as homogeneous materials and there are limited studying results about the time-dependent properties of constituents in them to reveal their creep mechanism. In this context, the targeting nanoindentation technique (TNIT) was adopted to investigate the viscoelastic characteristics of kaolinite and quartz in a two-constituent mudstone sample. The TNIT consists of identifications of mineralogical constituents in mudstone and nanoindentation experiments on identified constituents. After conducting experiments, the unloading stages of the typical indentation curves were analyzed to calculate the hardness and elastic modulus of constituents in mudstone. And the 180 s load-holding stages with the maximum load of 50 mN were transformed to the typical creep strain-time curves for fitting analysis by using the Kelvin model, the standard viscoelastic model and the extended viscoelastic model. Fitting results show that the standard viscoelastic model can perfectly express the nanoindentation creep behaviors of both kaolinite and quartz and fitting constants are suitable to be used to calculate their creep parameters. The creep parameters of kaolinite are much smaller than that of quartz, which drives the time-dependent large deformation of the soft mudstone. At last, the standard viscoelastic model was verified on a sandstone sample.


Author(s):  
Mina Karimi ◽  
Mehrdad Massoudi ◽  
Noel Walkington ◽  
Matteo Pozzi ◽  
Kaushik Dayal

2020 ◽  
Vol 85 (773) ◽  
pp. 921-931
Author(s):  
Tsuyoshi FUKASAWA ◽  
Shigeki OKAMURA ◽  
Takahiro SOMAKI ◽  
Takayuki MIYAGAWA ◽  
Tomohiko YAMAMOTO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document