Curved Origami-Based Mechanical Metamaterials with Selectable Creases for In-Situ Tunable Stiffness

Author(s):  
Hanqing Jiang
Nano LIFE ◽  
2014 ◽  
Vol 04 (03) ◽  
pp. 1441001 ◽  
Author(s):  
Jun Chen ◽  
Xiaojian Li ◽  
Liqian Gao ◽  
Yi Hu ◽  
Wen Zhong ◽  
...  

In light of the challenges along with the traditional intravenous administration of chemotherapeutics, injectable hydrogel-drug system emerges as a powerful tool for noninvasive and in situ controlled-release of drugs. Herein, we report a novel strategy of drug delivery system with pH responsive injectable hydrogels by taking advantages of two biomaterials. The first one is a pH sensitive polymer-drug (prodrug) conjugate, poly (ethylene glycol)–doxorubicin (MPEG–DOX) with hydrazone linkage. This prodrug interacted with a second biomaterial, α-cyclodextrin (α-CD) under mild conditions and subsequently formed the hydrogels in minutes with tunable stiffness. The gels showed a sustained release behavior dependent on the surrounding pH and released drugs effectively killed tumor cells (MCF-7). The quick cell uptake and efficient intracellular delivery of DOX were observed under a confocal microscope. This study thus provides a novel and simple drug encapsulation strategy to deliver poorly soluble drugs in situ for a potential targeted chemotherapy.


2018 ◽  
Vol 115 (9) ◽  
pp. 2032-2037 ◽  
Author(s):  
Zirui Zhai ◽  
Yong Wang ◽  
Hanqing Jiang

Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications.


Author(s):  
Narayanan Kidambi ◽  
Vipin Agarwal ◽  
Tyler N. Tallman ◽  
Kon-Well Wang

1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Sign in / Sign up

Export Citation Format

Share Document