The effect of chronic high-fat feeding on ER stress and WFS1 expression along with insulin content and secretion

Author(s):  
Fateme Binayi
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Masayuki Hatanaka ◽  
Emily Anderson-Baucum ◽  
Alexander Lakhter ◽  
Tatsuyoshi Kono ◽  
Bernhard Maier ◽  
...  

2010 ◽  
Vol 299 (5) ◽  
pp. E695-E705 ◽  
Author(s):  
Louise Deldicque ◽  
Patrice D. Cani ◽  
Andrew Philp ◽  
Jean-Marc Raymackers ◽  
Paul J. Meakin ◽  
...  

High-fat diets are known to decrease muscle protein synthesis, the adaptation to overload, and insulin sensitivity. Conditions that disrupt endoplasmic reticulum (ER) homeostasis lead to the activation of the unfolded protein response (UPR) that is associated with decreases in protein synthesis, chronic inflammation, and insulin resistance. The purpose of the present study was to establish whether ER stress is induced by a high-fat diet in skeletal muscle and whether ER stress can decrease mTORC1 activity and protein synthesis in muscle cells. Two independent protocols of high-fat feeding activated the UPR in mice. In the first study, mice consuming a high-fat diet containing 70% fat and <1% carbohydrates for 6 wk showed higher markers of the UPR (BiP, IRE1α, and MBTPS2) in the soleus and in the tibialis anterior muscles and ATF4 in the tibialis anterior ( P < 0.05). In the second study, a 20-wk high-fat diet containing 46% fat and 36% carbohydrates also increased BiP, IRE1α, and phospho-PERK protein and the expression of ATF4, CHOP, and both the spliced and unspliced forms of XBP1 in the plantar flexors ( P < 0.05). In C2C12 muscle cells, tunicamycin, thapsigargin, and palmitic acid all increased UPR markers and decreased phosphorylation of S6K1 ( P < 0.05). Collectively, these data show that a high-fat diet activates the UPR in mouse skeletal muscle in vivo. In addition, in vitro studies indicate that palmitic acid, and other well-known ER stress inducers, triggered the UPR in myogenic cells and led to a decrease in protein synthesis and mTORC1 activity.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1999-P ◽  
Author(s):  
HYE LIM NOH ◽  
SUJIN SUK ◽  
RANDALL H. FRIEDLINE ◽  
KUNIKAZU INASHIMA ◽  
DUY A. TRAN ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 165-LB
Author(s):  
ITZEL FLORES ◽  
CHRIS SHANNON ◽  
MARCEL FOURCAUDOT ◽  
TERRY BAKEWELL ◽  
LUKE NORTON

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 553-P
Author(s):  
VIRGINIE AUBERT
Keyword(s):  
High Fat ◽  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2040-P
Author(s):  
COURTNEY J. SMITH ◽  
KYLE B. KENER ◽  
JEFFERY S. TESSEM

Diabetes ◽  
1986 ◽  
Vol 35 (3) ◽  
pp. 329-334 ◽  
Author(s):  
A. L. Vallerand ◽  
J. Lupien ◽  
L. J. Bukowiecki
Keyword(s):  
High Fat ◽  

Diabetes ◽  
1988 ◽  
Vol 37 (10) ◽  
pp. 1397-1404 ◽  
Author(s):  
T. Watarai ◽  
M. Kobayashi ◽  
Y. Takata ◽  
T. Sasaoka ◽  
M. Iwasaki ◽  
...  

Diabetes ◽  
1997 ◽  
Vol 46 (2) ◽  
pp. 215-223 ◽  
Author(s):  
J. R. Zierath ◽  
K. L. Houseknecht ◽  
L. Gnudi ◽  
B. B. Kahn

2009 ◽  
Vol 54 (1) ◽  
Author(s):  
M Wierzbicki ◽  
A Chabowski ◽  
M Żendzian-Piotrowska ◽  
E Harasim ◽  
J Górski
Keyword(s):  
High Fat ◽  

Sign in / Sign up

Export Citation Format

Share Document