Nonlocality, entanglement, and randomness in different conflicting interest Bayesian games

2020 ◽  
Vol 20 (11&12) ◽  
pp. 901-934
Author(s):  
Hargeet Kaur ◽  
Atul Kumar

We analyse different Bayesian games where payoffs of players depend on the types of players involved in a two-player game. The dependence is assumed to commensurate with the CHSH game setting. For this, we consider two different types of each player (Alice and Bob) in the game, thus resulting in four different games clubbed together as one Bayesian game. Considering different combinations of common interest, and conflicting interest coordination and anti-coordination games, we find that quantum strategies are always preferred over classical strategies if the shared resource is a pure non-maximally entangled state. However, when the shared resource is a class of mixed state, then quantum strategies are useful only for a given range of the state parameter. Surprisingly, when all conflicting interest games (Battle of the Sexes game and Chicken game) are merged into the Bayesian game picture, then the best strategy for Alice and Bob is to share a set of non-maximally entangled pure states. We demonstrate that this set not only gives higher payoff than any classical strategy, but also outperforms a maximally entangled pure Bell state, mixed Werner states, and Horodecki states. We further propose the representation of a special class of Bell inequality- tilted Bell inequality, as a common as well as conflicting interest Bayesian game. We thereafter, study the effect of sharing an arbitrary two-qubit pure state and a class of mixed state as quantum resource in those games; thus verifying that non-maximally entangled states with high randomness help attain maximum quantum benefit. Additionally, we propose a general framework of a two-player Bayesian game for d-dimensions Bell-CHSH inequality, with and without the tilt factor.

2021 ◽  
Vol 53 (7) ◽  
Author(s):  
Ali Motazedifard ◽  
Seyed Ahmad Madani ◽  
N. S. Vayaghan

AbstractUsing the type-I SPDC process in BBO nonlinear crystal, we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility (high-brightness) 98.50 ± 1.33% (87.71 ± 4.45%) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a nonlocal realism test, and find a strong violation from the classical physics or any hidden variable theory, S = 2.71 ± 0.10. Via measuring the coincidence count rate in the SPDC process, we obtain the quantum efficiency of single-photon detectors around (25.5 ± 3.4)%, which is in good agreement to their manufacturer company. As expected, we verify the linear dependency of the CC rate vs. pump power of input CW-laser, which may yield to find the effective second-order susceptibility crystal. Using the theory of the measurement of qubits, includes a tomographic reconstruction of quantum states due to the linear set of 16 polarization-measurement, together with a maximum-likelihood-technique, which is based on the numerical optimization, we calculate the physical non-negative definite density matrices, which implies on the non-separability and entanglement of prepared state. By having the maximum likelihood density operator, we calculate precisely the entanglement measures such as Concurrence, entanglement of formation, tangle, logarithmic negativity, and different entanglement entropies such as linear entropy, Von-Neumann entropy, and Renyi 2-entropy. Finally, this high-brightness and low-rate entangled photons source can be used for short-range quantum measurements in the Lab.


2021 ◽  
Author(s):  
ali motazedifard ◽  
Seyed Ahmad Madani ◽  
Nader Sobhkhiz Vayaghan

Abstract Using the type-I SPDC process in BBO nonlinear crystal (NLC), we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility (high-brightness) 98.50 ±1.33 % (87.71 ± 4.45 %) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a nonlocal realism test, and find a strong violation from the classical physics or any hidden variable theory (HVT), S= 2.71±0.10. Via measuring the coincidence count (CC) rate in the SPDC process, we obtain the quantum efficiency of single-photon detectors (SPDs) around (25.5 ±3.4)% , which is in good agreement to their manufacturer company. As expected, we verify the linear dependency of the CC rate vs. pump power of input CW-laser, which may yield to find the effective second-order susceptibility crystal. Using the theory of the measurement of qubits, includes a tomographic reconstruction of quantum states due to the linear set of 16 polarization-measurement, together with a maximum-likelihood-technique (MLT), which is based on the numerical optimization, we calculate the physical non-negative definite density matrices, which implies on the non-separability and entanglement of prepared state. By having the maximum likelihood density operator, we calculate precisely the entanglement measures such as Concurrence, entanglement of formation, tangle, logarithmic negativity, and different entanglement entropies such as linear entropy, Von-Neumann entropy, and Renyi 2-entropy. Finally, this high-brightness and low-rate entangled photons source can be used for short-range quantum measurements in the Lab.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5300
Author(s):  
Antonia Nisioti ◽  
George Loukas ◽  
Stefan Rass ◽  
Emmanouil Panaousis

The use of anti-forensic techniques is a very common practice that stealthy adversaries may deploy to minimise their traces and make the investigation of an incident harder by evading detection and attribution. In this paper, we study the interaction between a cyber forensic Investigator and a strategic Attacker using a game-theoretic framework. This is based on a Bayesian game of incomplete information played on a multi-host cyber forensics investigation graph of actions traversed by both players. The edges of the graph represent players’ actions across different hosts in a network. In alignment with the concept of Bayesian games, we define two Attacker types to represent their ability of deploying anti-forensic techniques to conceal their activities. In this way, our model allows the Investigator to identify the optimal investigating policy taking into consideration the cost and impact of the available actions, while coping with the uncertainty of the Attacker’s type and strategic decisions. To evaluate our model, we construct a realistic case study based on threat reports and data extracted from the MITRE ATT&CK STIX repository, Common Vulnerability Scoring System (CVSS), and interviews with cyber-security practitioners. We use the case study to compare the performance of the proposed method against two other investigative methods and three different types of Attackers.


2003 ◽  
Vol 3 (2) ◽  
pp. 157-164
Author(s):  
H. Bechmann-Pasquinucci ◽  
N. Gisin

We present a generalized Bell inequality for two entangled quNits. On one quNit the choice is between two standard von Neumann measurements, whereas for the other quNit there are N^2 different binary measurements. These binary measurements are related to the intermediate states known from eavesdropping in quantum cryptography. The maximum violation by \sqrt{N} is reached for the maximally entangled state. Moreover, for N=2 it coincides with the familiar CHSH-inequality.


2016 ◽  
Vol 30 (15) ◽  
pp. 1650190
Author(s):  
Xue-Qun Yan ◽  
Fu-Zhong Wang

The correlations dynamics of two atoms in the case of a micromaser-type system is investigated. We show that the entangled state can be created by initially maximally mixed state and there exist collapse and revival phenomena for the time evolutions of both entanglement and quantum discord under the system considered as the field is initially in the Fock state. Our results confirm that entanglement and quantum discord have similar behaviors in certain time ranges, such as their oscillations during the time evolution being almost in phase, but they also present significant differences, such as quantum discord being maintained even after the complete loss of entanglement. Furthermore, we exhibit clearly that the dynamics of quantum discord under the action of environment are intimately related to the generation and evolution of entanglement.


2017 ◽  
Vol 2 (1) ◽  
pp. 015010 ◽  
Author(s):  
Matteo Schiavon ◽  
Luca Calderaro ◽  
Mirko Pittaluga ◽  
Giuseppe Vallone ◽  
Paolo Villoresi

2011 ◽  
Vol 09 (02) ◽  
pp. 763-772 ◽  
Author(s):  
YI-YOU NIE ◽  
YUAN-HUA LI ◽  
JUN-CHANG LIU ◽  
MING-HUANG SANG

We demonstrate that a genuine six-qubit entangled state introduced by Tapiador et al. [J. Phys. A42 (2009) 415301] can be used to realize the deterministic controlled teleportation of an arbitrary three-qubit state by performing only the Bell-state measurements.


2014 ◽  
Vol 90 (17) ◽  
Author(s):  
J. Robert Johansson ◽  
Neill Lambert ◽  
Imran Mahboob ◽  
Hiroshi Yamaguchi ◽  
Franco Nori

Sign in / Sign up

Export Citation Format

Share Document