controlled teleportation
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 24)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Xiao-Fang Liu ◽  
Dong-Fen Li ◽  
Yun-Dan Zheng ◽  
Xiao-Long Yang ◽  
Jie Zhou ◽  
...  

Abstract Quantum controlled teleportation is the transmission of the quantum state under the supervision of a third party. This paper presents a theoretical and experimental combination of an arbitrary two-qubit quantum controlled teleportation scheme. In the scheme, the sender Alice only needs to perform two Bell state measurements, and the receiver Bob can perform the appropriate unitary operation to reconstruct arbitrary two-qubit states under the control of the supervisor Charlie. We verified the operation process of the scheme on the IBM Quantum Experience platform and further checked the accuracy of the transmitted quantum state by performing quantum state tomography. Meanwhile, good fidelity is obtained by calculating the theoretical density matrix and the experimental density matrix. We also introduced a sequence of photonic states to analyze the possible intercept-replace-resend, intercept-measure-resend, and entanglement-measure-resend attacks on this scheme. The results proved that our scheme is highly secure.


2021 ◽  
Author(s):  
Mrittunjoy Guha Majumdar

In this chapter, nested multilevel entanglement is formulated and discussed in terms of Matryoshka states. The generation of such states that contain nested patterns of entanglement, based on an anisotropic XY model has been proposed. Two classes of multilevel-entanglement- the Matryoshka Q-GHZ states and Matryoshka generalised GHZ states, are studied. Potential applications of such resource states, such as for quantum teleportation of arbitrary one, two and three qubits states, bidirectional teleportation of arbitrary two qubit states and probabilistic circular controlled teleportation are proposed and discussed, in terms of a Matryoshka state over seven qubits. We also discuss fractal network protocols, surface codes and graph states as well as generation of arbitrary entangled states at remote locations in this chapter.


2021 ◽  
pp. 2150073
Author(s):  
Wanbin Zhang ◽  
Baosheng Li

A total of seven qubits are in a maximally entangled state. Using such an entangled state as quantum channel is based on the construction requirements of quantum long-distance communication [Pan et al., Nature 488, 185 (2012)]. Multi-party quantum channel (QC) should be studied. We put forward three deterministic bidirectional quantum controlled teleportation (BQCT) schemes. To be specific, BQCT can be realized between any two parties in a deterministic manner with another as the control. Alternatively, the BQCT capacity of such state in the given qubit distribution is thus essentially revealed by virtue of the schemes.


2020 ◽  
Vol 34 (35) ◽  
pp. 2050412
Author(s):  
Xin-Wei Zha ◽  
Ke Li

In this paper, a quantum teleportation protocol has been proposed that can simultaneously transmit quantum states in four directions using a single entangled channel. This means that there are four senders who want to transmit state information, and they are Alice, Bob, Charlie, and David. In order to ensure the security of information transmission, the information state of the four is transmitted to four receivers Fancy1, Fancy2, Fancy3, and Fancy4 under the control of the controller Elle. Through unitary transformation and entanglement property, receivers can recover the original quantum state from the four senders, which is easy to implement. The teleportation protocol is perfect.


Author(s):  
Mrittunjoy Guha Majumdar

Multipartite entanglement is a resource for application in disparate protocols, of computing, communication and cryptography. Nested entanglement provides resource-states for quantum information processing. In this paper, Matryoshka quantum resource-states, which contain nested entanglement patterns, has been studied. A novel scheme for the generation of such quantum states has been proposed using an anisotropic XY spin-spin interaction-based model. The application of the Matryoshka GHZ-Bell states for n-qubit teleportation is reviewed and an extension to more general Matryoshka ExhS-Bell states is posited. An example of Matryoshka ExhS-Bell states is given in the form of the genuinely entangled seven-qubit Xin-Wei Zha state. Generation, characterisation and application of this seven-qubit resource state in theoretical schemes for quantum teleportation of arbitrary one, two and three qubits states, bidirectional teleportation of arbitrary two qubit states and probabilistic circular controlled teleportation are presented.


2020 ◽  
Vol 102 (1) ◽  
Author(s):  
Kabgyun Jeong ◽  
Jaewan Kim ◽  
Soojoon Lee

2020 ◽  
Vol 35 (25) ◽  
pp. 2050204
Author(s):  
Shiya Sun ◽  
Huisheng Zhang

In this paper, we present a deterministic four-party quantum cyclic controlled teleportation (QCYCT) scheme, by using a multi-qubit partially entangled state as the quantum channel. In this scheme, Alice can teleport an arbitrary [Formula: see text]-qubit state to Bob, Bob can teleport an arbitrary [Formula: see text]-qubit state to Charlie and Charlie can teleport an arbitrary [Formula: see text]-qubit state to Alice under the control of the supervisor David. We utilize rotation gate, Hadamard gates and controlled-NOT (CNOT) gates to construct the multi-qubit partially entangled channel. Only Bell-state measurements, single-qubit von-Neumann measurement and proper unitary operations are required in this scheme, which can be realized in practice easily based on the present quantum experiment technologies. The direction of cyclic controlled teleportation of arbitrary multi-qubit states can also be changed by altering the quantum channel. Analysis demonstrates that the success probability of the proposed scheme can still reach 100% although the quantum channel is non-maximally entangled. Furthermore, the proposed four-party scheme can be generalized into the case involving [Formula: see text] correspondents, which is more suitable for quantum communication networks. We also calculate the intrinsic efficiency and discuss the security of the proposed scheme. Compared with the existing QCYCT schemes which realized cyclic controlled teleportation of arbitrary single-qubit states, specific two-qubit and three-qubit states, the proposed scheme is of general significance.


Sign in / Sign up

Export Citation Format

Share Document