scholarly journals Highly Stable Low Redox Potential Quinone for Aqueous Flow Batteries

Author(s):  
Min Wu ◽  
Meisam Bahari ◽  
Yan Jing ◽  
Kiana Amini ◽  
Eric Fell ◽  
...  

Aqueous organic redox flow batteries are promising candidates for large-scale energy storage. However, the design of stable and inexpensive electrolytes is challenging. Here, we report a highly stable, low redox potential, and potentially inexpensive negolyte species, sodium 3,3',3'',3'''-((9,10-anthraquinone-2,6-diyl)bis(azanetriyl))tetrakis(propane-1-sulfonate) (2,6-N-TSAQ), which is synthesized in a single step from inexpensive precursors. Pairing 2,6-N-TSAQ with potassium ferrocyanide at pH 14 yielded a battery with the highest open-circuit voltage, 1.14 V, of any anthraquinone-based cell with a capacity fade rate <10%/yr. When 2,6-N-TSAQ was cycled at neutral pH, it exhibited two orders of magnitude higher capacity fade rate. The great difference in anthraquinone cycling stability at different pH is interpreted in terms of the thermodynamics of the anthrone formation reaction. This work shows the great potential of organic synthetic chemistry for the development of viable flow battery electrolytes and demonstrates the remarkable performance improvements achievable with an understanding of decomposition mechanisms.

Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 614 ◽  
Author(s):  
Xianglin Mei ◽  
Bin Wu ◽  
Xiuzhen Guo ◽  
Xiaolin Liu ◽  
Zhitao Rong ◽  
...  

Nanocrystal solar cells (NCs) allow for large scale solution processing under ambient conditions, permitting a promising approach for low-cost photovoltaic products. Although an up to 10% power conversion efficiency (PCE) has been realized with the development of device fabrication technologies, the open circuit voltage (Voc) of CdTe NC solar cells has stagnated below 0.7 V, which is significantly lower than most CdTe thin film solar cells fabricated by vacuum technology (around 0.8 V~0.9 V). To further improve the NC solar cells’ performance, an enhancement in the Voc towards 0.8–1.0 V is urgently required. Given the unique processing technologies and physical properties in CdTe NC, the design of an optimized band alignment and improved junction quality are important issues to obtain efficient solar cells coupled with high Voc. In this work, an efficient method was developed to improve the performance and Voc of solution-processed CdTe nanocrystal/TiO2 hetero-junction solar cells. A thin layer of solution-processed CdS NC film (~5 nm) as introduced into CdTe NC/TiO2 to construct hetero-junction solar cells with an optimized band alignment and p-n junction quality, which resulted in a low dark current density and reduced carrier recombination. As a result, devices with improved performance (5.16% compared to 2.63% for the control device) and a Voc as high as 0.83 V were obtained; this Voc value is a record for a solution-processed CdTe NC solar cell.


2002 ◽  
Vol 715 ◽  
Author(s):  
R. J. Koval ◽  
Chi Chen ◽  
G. M. Ferreira ◽  
A. S. Ferlauto ◽  
J. M. Pearce ◽  
...  

AbstractWe have revisited the issue of p-layer optimization for amorphous silicon (a-Si:H) solar cells, correlating spectroscopic ellipsometry (SE) measurements of the p-layer in the device configuration with light current-voltage (J-V) characteristics of the completed solar cell. Working with p-layer gas mixtures of H2/SiH4/BF3 in rf plasma-enhanced chemical vapor deposition (PECVD), we have found that the maximum open circuit voltage (Voc) for n-i-p solar cells is obtained using p-layers prepared with the maximum possible hydrogen-dilution gas-flow ratio R=[H2]/[SiH4], but without crossing the thickness-dependent transition from the a-Si:H growth regime into the mixed-phase amorphous + microcrystalline [(a+μc)-Si:H] regime for the ∼200 Å p-layers. As a result, optimum single-step p-layers are obtained under conditions similar to those applied for optimum i-layers, i.e., by operating in the so-called “protocrystalline” Si:H film growth regime. The remarkable dependence of the p-layer phase (amorphous vs. microcrystalline) and n-i-p solar cell Voc on the nature of the underlying i-layer surface also supports this conclusion.


2021 ◽  
Author(s):  
Claudina Kolesnichenko ◽  
Harry Pratt ◽  
Leo J Small ◽  
Travis Mark Anderson

1997 ◽  
Vol 496 ◽  
Author(s):  
D. Peramunage ◽  
K. M. Abraham

ABSTRACTThe objective of this study was to highlight the usefulness of micron-sized Li4Ti5O12 in three distinctive areas: a) cathode of a low-voltage Li battery, b) insertion type auxiliary electrode to investigate the electrochemistry of oxide cathode materials, and c) anode of a Li-ion cell in conjunction with LiMn2O4 cubic spinel cathode. Li cells with Li4Ti5O12 exhibited an open circuit voltage of ∼1.6V, >90% utilization (in terms of the theoretical capacity) at ∼C/10 rate, ∼40% utilization 5C rate, and extended full-depth charge/discharge cycling at ≥ 1C rates with virtually no capacity fade. LiMn2O4 cathodes, evaluated in Li(4+xTi5O12 (x = ∼1.2)/LiMn2O4 cells, exhibited extended full-depth cycling capability with a small capacity fade rate of <0.1% which appeared to slow down with cycling. At a 1C discharge rate, over 190 cycles were demonstrated corresponding to an end utilization of ∼90 mAh/g or ∼0.6 mole Li per LiMn204. Balanced Li4Ti5O12//solid polymer electrolyte//LiMn2O4 full cells of slightly cathode-limited configuration had an open-circuit voltage of ∼3.0V and a mid-discharge voltage of ∼2.5V showing full-depth extended cycling capability at a utilization of ∼90 mAh/g or ∼0.6 mole Li per LiMn204 at the 1C and ∼0.45 mole Li per LiMn2O4 at the 7.5C discharge rate.


2021 ◽  
Author(s):  
Nicolas Hayer ◽  
Maximilian Kohns

Redox flow batteries (RFBs) are considered an outstanding candidate for the integration of renewable energy sources into the existing power grids. A key property of RFBs is the open circuit voltage (OCV) corresponding to the currentless equilibrium state. In the literature, the Nernst equation describing this property is often simplified by neglecting the activity coefficients. In this work, using a thermodynamically rigorous approach, we show that activity coefficients have a significant influence on the OCV of the Iron-Cadmium and All-Vanadium RFBs. Moreover, this influence varies with the state of charge. Therefore, activity coefficients should not be neglected in the Nernst equation. We show that when doing so, the resulting offset in OCV is actually comparable to typical voltage losses occurring during operation. Hence, fitting kinetic parameters to measurement data of voltage losses can lead to ambiguous results if only the idealized OCV, obtained by neglecting the activity coefficients, is used in that evaluation. Therefore, the implementation of a thermodynamically rigorous model has the potential to significantly improve state-of-the-art models for RFBs.


2022 ◽  
Author(s):  
Min Wu ◽  
Meisam Bahari ◽  
Yan Jing ◽  
Kiana Amini ◽  
Eric M. Fell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document