nernst equation
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 23)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Nicolas Hayer ◽  
Maximilian Kohns

Redox flow batteries (RFBs) are considered an outstanding candidate for the integration of renewable energy sources into the existing power grids. A key property of RFBs is the open circuit voltage (OCV) corresponding to the currentless equilibrium state. In the literature, the Nernst equation describing this property is often simplified by neglecting the activity coefficients. In this work, using a thermodynamically rigorous approach, we show that activity coefficients have a significant influence on the OCV of the Iron-Cadmium and All-Vanadium RFBs. Moreover, this influence varies with the state of charge. Therefore, activity coefficients should not be neglected in the Nernst equation. We show that when doing so, the resulting offset in OCV is actually comparable to typical voltage losses occurring during operation. Hence, fitting kinetic parameters to measurement data of voltage losses can lead to ambiguous results if only the idealized OCV, obtained by neglecting the activity coefficients, is used in that evaluation. Therefore, the implementation of a thermodynamically rigorous model has the potential to significantly improve state-of-the-art models for RFBs.


2021 ◽  
Author(s):  
José M. Pingarrón ◽  
Ján Labuda ◽  
Jiří Barek ◽  
Christopher M. A. Brett ◽  
Maria Filomena Camões ◽  
...  
Keyword(s):  

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1607
Author(s):  
Mariano Venturini ◽  
Ariana Rossen ◽  
Patricia Silva Paulo

To produce nuclear fuels, it is necessary to convert uranium′s ore into UO2-ceramic grade, using several quantities of kerosene, methanol, nitric acid, ammonia, and, in low level, tributyl phosphate (TBP). Thus, the effluent generated by nuclear industries is one of the most toxic since it contains high concentrations of dangerous compounds. This paper explores biological parameters on real nuclear wastewater by the Monod model in an ORP controlled predicting the specific ammonia oxidation. Thermodynamic parameters were established using the Nernst equation to monitor Oxiders/Reductors relationship to obtain a correlation of these parameters to controlling and monitoring; that would allow technical operators to have better control of the nitrification process. The real nuclear effluent is formed by a mixture of two different lines of discharges, one composed of a high load of nitrogen, around 11,000 mg/L (N-NH4+-N-NO3−) and 600 mg/L Uranium, a second one, proceeds from uranium purification, containing TBP and COD that have to be removed. Bioprocesses were operated on real wastewater samples over 120 days under controlled ORP, as described by Nernst equations, which proved to be a robust tool to operate nitrification for larger periods with a very high load of nitrogen, uranium, and COD.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Han Ngo ◽  
Chaitu Dandu ◽  
Brianna Gibney ◽  
Serena Kuang

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 238
Author(s):  
James A. Birrell ◽  
Patricia Rodríguez-Maciá ◽  
Adrian Hery-Barranco

[FeFe] hydrogenases, which are considered the most active naturally occurring catalysts for hydrogen oxidation and proton reduction, are extensively studied as models to learn the important features for efficient H2 conversion catalysis. Using infrared spectroscopy as a selective probe, the redox behaviour of the active site H-cluster is routinely modelled with thermodynamic schemes based on the Nernst equation for determining thermodynamic parameters, such as redox midpoint potentials and pKa values. Here, the thermodynamic models usually applied to [FeFe] hydrogenases are introduced and discussed in a pedagogic fashion and their applicability to additional metalloenzymes and molecular catalysts is also addressed.


2021 ◽  
Vol 11 (01) ◽  
pp. 1-11
Author(s):  
Panagis G. Papadopoulos ◽  
Christopher G. Koutitas ◽  
Christos G. Karayannis ◽  
Panos D. Kiousis ◽  
Yannis N. Dimitropoulos

Author(s):  
Breno Nascimento Ciribelli ◽  
Flavio Colmati ◽  
Elki Cristina de Souza

Walther Hermann Nernst received the Nobel Prize in Chemistry in 1920 for the formulation of the third law of thermodynamics, thus celebrating a century in this 2020 year. His work helped the establishment of modern physical chemistry, since he researched into fields, such as thermodynamics and electrochemistry, in which the Nernst equation is included. This paper reports on several experiments that used a Daniell galvanic cell working in different electrolyte concentrations for comparing results with the theoretical values calculated by the Nernst equation. The concentration and activity coefficients values employed for zinc sulfate and copper electrolytes showed activity can replaces concentrations in thermodynamic functions, and the results are entirely consistent with experimental data. The experimental electromotive force from standard Daniell cell, for ZnSO4 and CuSO4, with unitary activity and in different concentrations at room temperature is in agreement with those from theoretical calculations. Cu2+ ion concentrations and temperature were simultaneously varied; however, the cell potential cannot be included in calculations of Nernst equation for different temperatures than 25 °C because the standard potential value was set at 25 °C. The cell potential decreases drastically when the Cu2+ concentration was reduced and the temperature was above 80 oC.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Diego del Olmo ◽  
Michal Pavelka ◽  
Juraj Kosek

AbstractOriginally derived by Walther Nernst more than a century ago, the Nernst equation for the open-circuit voltage is a cornerstone in the analysis of electrochemical systems. Unfortunately, the assumptions behind its derivation are often overlooked in the literature, leading to incorrect forms of the equation when applied to complex systems (for example, those with ion-exchange membranes or involving mixed potentials). Such flaws can be avoided by applying a correct thermodynamic derivation independently of the form in which the electrochemical reactions are written. The proper derivation of the Nernst equation becomes important, for instance, in modeling of vanadium redox flow batteries or zinc-air batteries. The rigorous path towards the Nernst equation derivation starts in non-equilibrium thermodynamics.


Author(s):  
Bernard Delalande ◽  
Hirohisa Tamagawa ◽  
Vladimir Matveev

Man has always been interested in animal electricity, which seems to be measured in every living cell. He has been fascinated by trying to elucidate the mechanisms by which this potential is created and maintained. Biology is the science that seeks to explain this mystery. Biology is based on basic sciences such as physics or chemistry. The latter, in turn, make systematic use of mathematics to measure, evaluate and predict certain phenomena and to develop "laws" and models that are as general as possible while respecting, as closely as possible, observations and facts. The Nernst equation was one of the pillars of electrochemistry. Biology also uses this same equation as one of the indispensable bases for the computation of membrane potential. Man has established a cellular model that highlights this equation in several forms. However, we are going to show by various means that this model is inadequate or even inapplicable.


Author(s):  
Bernard Delalande ◽  
Hirohisa Tamagawa ◽  
Vladimir Matveev

Man has always been interested in animal electricity, which seems to be measured in every living cell. He has been fascinated by trying to elucidate the mechanisms by which this potential is created and maintained. Biology is the science that seeks to explain this mystery. Biology is based on basic sciences such as physics or chemistry. The latter, in turn, make systematic use of mathematics to measure, evaluate and predict certain phenomena and to develop "laws" and models that are as general as possible while respecting, as closely as possible, observations and facts. The Nernst equation was one of the pillars of electrochemistry. Biology also uses this same equation as one of the indispensable bases for the computation of membrane potential. Man has established a cellular model that highlights this equation in several forms. However, we are going to show by various means that this model is inadequate or even inapplicable.


Sign in / Sign up

Export Citation Format

Share Document