scholarly journals Molecular Modelling of Ionic Liquids: Force-Field Validation and Thermodynamic Perspective from Large-Scale Fast-Growth Solvation Free Energy Calculations

Author(s):  
Zhaoxi Sun ◽  
Mao Wang ◽  
Qiaole He ◽  
Zhirong Liu

Molecular simulations are becoming a common tool for the investigation of dynamic and thermodynamic properties of novel solvents such as ionic liquids and the more recent deep eutectic solvents. As the electrostatics derived from ab initio calculations often fail to reproduce the experimental behaviors of these functionalized solvents, a common treatment is scaling the atomic charges to improve the accord between experimental and computational results for some selected properties, e.g., the density of the liquids. Although there are many computational benchmarks on structural properties of bulk ionic liquids, the choice of the best scaling parameter remains an open question. As these liquids are designed to solvate solutes, whether the solvation thermodynamics could be correctly described is of utmost importance in practical situations. Therefore, in the current work, we provide a thermodynamic perspective of this charge scaling issue directly from solute-solvent interactions. We present a comprehensive large-scale calculation of solvation free energies via nonequilibrium fast-switching simulations for a spectrum of molecules in ionic liquids, the atomic charges of which derived from ab initio calculations are scaled to find the best scaling factor that maximizes the prediction-experiment correlation. The density-derived choice of the scaling parameter as the estimate from bulk properties is compared with the solvation-free-energy-derived one. We observed that when the scaling factor is decreased from 1.0 to 0.5, the mass density exhibits a monotonically decreasing behavior, which is caused by weaker inter-molecular interactions produced by the scaled atomic charges. However, the solvation free energies of external agents do not show consistent monotonic behaviors like the bulk property, the underlying physics of which are elucidated to be the competing electrostatic and vdW responses to the scaling-parameter variation. More intriguingly, although the recommended value for charge scaling from bulk properties falls in the neighborhood of 0.6~0.7, solvation free energies calculated at this value are not in good agreement with the experimental reference. By modestly increasing the scaling parameter (e.g., by 0.1) to avoid over-scaling of atomic charges, the solute-solvent interaction free energy approaches the reference value and the quality of calculated solvation thermodynamics approaches the hydration case. According to this phenomenon, we propose a feasible way to obtain the best scaling parameter that produces balanced solute-solvent and solvent-solvent interactions, i.e., first scanning the density-scaling-factor profile and then adding ~0.1 to that solution. We further calculate the partition coefficient or transfer free energy of solutes from water to ionic liquids to provide another thermodynamic perspective of the charge scaling benchmark. Another central result of the current work is about the widely used force fields to describe bonded and vdW terms for ionic liquids derivatives. These pre-fitted transferable parameters are evaluated and refitted in a system-specific manner to provide a detailed assessment of the reliability and accuracy of these commonly used parameters. Component-specific refitting procedures unveil that the bond-stretching term is the most problematic part of the GAFF derivatives and the angle-bending term in some cases is also not accurate enough. Astonishingly, the torsional potential defined in these pre-fitted force fields performs extremely well.

2019 ◽  
Author(s):  
Maximiliano Riquelme ◽  
Esteban Vöhringer-Martinez

In molecular modeling the description of the interactions between molecules forms the basis for a correct prediction of macroscopic observables. Here, we derive atomic charges from the implicitly polarized electron density of eleven molecules in the SAMPL6 challenge using the Hirshfeld-I and Minimal Basis Set Iterative Stockholder(MBIS) partitioning method. These atomic charges combined with other parameters in the GAFF force field and different water/octanol models were then used in alchemical free energy calculations to obtain hydration and solvation free energies, which after correction for the polarization cost, result in the blind prediction of the partition coefficient. From the tested partitioning methods and water models the S-MBIS atomic charges with the TIP3P water model presented the smallest deviation from the experiment. Conformational dependence of the free energies and the energetic cost associated with the polarization of the electron density are discussed.


2017 ◽  
Author(s):  
Guilherme Duarte Ramos Matos ◽  
Daisy Y. Kyu ◽  
Hannes H. Loeffler ◽  
John D. Chodera ◽  
Michael R. Shirts ◽  
...  

AbstractSolvation free energies can now be calculated precisely from molecular simulations, providing a valuable test of the energy functions underlying these simulations. Here, we briefly review “alchemical” approaches for calculating the solvation free energies of small, neutral organic molecules from molecular simulations, and illustrate by applying them to calculate aqueous solvation free energies (hydration free energies). These approaches use a non-physical pathway to compute free energy differences from a simulation or set of simulations and appear to be a particularly robust and general-purpose approach for this task. We also present an update (version 0.5) to our FreeSolv database of experimental and calculated hydration free energies of neutral compounds and provide input files in formats for several simulation packages. This revision to FreeSolv provides calculated values generated with a single protocol and software version, rather than the heterogeneous protocols used in the prior version of the database. We also further update the database to provide calculated enthalpies and entropies of hydration and some experimental enthalpies and entropies, as well as electrostatic and nonpolar components of solvation free energies.


Author(s):  
Ryther Anderson ◽  
Diego Gómez-Gualdrón

Metal-organic frameworks (MOFs) have captivated the research community due to a modular crystal structure that is tailorable for many applications. However, with millions of possible MOFs to be considered, it is challenging to identify the ideal MOF for the application of choice. Although computational screening of MOF databases has provided a fast way to evaluate MOF properties, validation experiments on predicted “exceptional” MOFs are not common due to uncertainties on the synthetic likelihood of computationally constructed MOFs, hence hindering material discovery. Aiming to leverage the perspective provided by large datasets, here we created and screened a topologically diverse database of 8,500 MOFs to interrogate whether thermodynamic stability metrics such as free energy could be used to generally predict the synthetic likelihood of computationally constructed MOFs. To this end, we first evaluated the suitability of two methods and three force fields to calculate free energies in MOFs at large scale, settling on the Frenkel-Ladd path thermodynamic integration method and the UFF4MOF force field. Upon defining a relative free energy, Δ<sub>LM</sub>F<sub>FL</sub>, that corrects for some force field artifacts specific to MOF nodes, we found that previously synthesized MOFs tended to cluster in a region below Δ<sub>LM</sub>F<sub>FL</sub> = 4.4 kJ/mol per atom, suggesting a general first filter to discriminate between synthetically likely and unlikely MOFs. However, a second filter is needed when several MOF isomorphs are below the Δ<sub>LM</sub>F<sub>FL</sub> threshold. In 84% of the cases, the synthetically accessible MOF within an isomorphic series presented the lowest predicted free energy. The present; work suggests that crystal free energies could be key to understanding synthetic likelihood for MOFs in computational databases (and MOFs in general), and that the thermodynamics stability of the fully assembled MOF often determines synthetic accessibility.


2020 ◽  
Author(s):  
Ryther Anderson ◽  
Diego Gómez-Gualdrón

Metal-organic frameworks (MOFs) have captivated the research community due to a modular crystal structure that is tailorable for many applications. However, with millions of possible MOFs to be considered, it is challenging to identify the ideal MOF for the application of choice. Although computational screening of MOF databases has provided a fast way to evaluate MOF properties, validation experiments on predicted “exceptional” MOFs are not common due to uncertainties on the synthetic likelihood of computationally constructed MOFs, hence hindering material discovery. Aiming to leverage the perspective provided by large datasets, here we created and screened a topologically diverse database of 8,500 MOFs to interrogate whether thermodynamic stability metrics such as free energy could be used to generally predict the synthetic likelihood of computationally constructed MOFs. To this end, we first evaluated the suitability of two methods and three force fields to calculate free energies in MOFs at large scale, settling on the Frenkel-Ladd path thermodynamic integration method and the UFF4MOF force field. Upon defining a relative free energy, Δ<sub>LM</sub>F<sub>FL</sub>, that corrects for some force field artifacts specific to MOF nodes, we found that previously synthesized MOFs tended to cluster in a region below Δ<sub>LM</sub>F<sub>FL</sub> = 4.4 kJ/mol per atom, suggesting a general first filter to discriminate between synthetically likely and unlikely MOFs. However, a second filter is needed when several MOF isomorphs are below the Δ<sub>LM</sub>F<sub>FL</sub> threshold. In 84% of the cases, the synthetically accessible MOF within an isomorphic series presented the lowest predicted free energy. The present; work suggests that crystal free energies could be key to understanding synthetic likelihood for MOFs in computational databases (and MOFs in general), and that the thermodynamics stability of the fully assembled MOF often determines synthetic accessibility.


2019 ◽  
Author(s):  
Maximiliano Riquelme ◽  
Esteban Vöhringer-Martinez

In molecular modeling the description of the interactions between molecules forms the basis for a correct prediction of macroscopic observables. Here, we derive atomic charges from the implicitly polarized electron density of eleven molecules in the SAMPL6 challenge using the Hirshfeld-I and Minimal Basis Set Iterative Stockholder(MBIS) partitioning method. These atomic charges combined with other parameters in the GAFF force field and different water/octanol models were then used in alchemical free energy calculations to obtain hydration and solvation free energies, which after correction for the polarization cost, result in the blind prediction of the partition coefficient. From the tested partitioning methods and water models the S-MBIS atomic charges with the TIP3P water model presented the smallest deviation from the experiment. Conformational dependence of the free energies and the energetic cost associated with the polarization of the electron density are discussed.


Sign in / Sign up

Export Citation Format

Share Document