Liquid Crystal Trimers Incorporating Saturated Isosteres of Benzene and Exhibiting Modulated Nematic Phases

Author(s):  
Adam Al-Janabi ◽  
Richard Mandle

<p>The nematic twist-bend (N<sub>TB</sub>) liquid crystal phase possesses a local helical structure with a pitch length of a few nanometres and is the first example of spontaneous symmetry breaking in a fluid system. All known examples of the N­<sub>TB­</sub> phase occur in materials whose constituent mesogenic units are aromatic hydrocarbons. It is not clear if this is due to synthetic convenience or a <i>bona fide</i> structural requirement for a material to exhibit this phase of matter. In this work we demonstrate that materials consisting largely of saturated hydrocarbons could also give rise to this mesophase. Furthermore, replacement of 1,4-disubstituted benzene with <i>trans</i> 1,4-cyclohexane or even 1,4-cubane does not especially alter the transition temperatures of the resulting material nor does it appear to impact upon the heliconical tilt angle, suggesting the local structure of the phase is unperturbed. Calculating the probability distribution of bend angles reveals that the choice of isosteric group has little impact on the overall molecular shape, demonstrating the shape-driven nature of the N<sub>TB</sub> phase. </p>

2019 ◽  
Author(s):  
Adam Al-Janabi ◽  
Richard Mandle

<p>The nematic twist-bend (N<sub>TB</sub>) liquid crystal phase possesses a local helical structure with a pitch length of a few nanometres and is the first example of spontaneous symmetry breaking in a fluid system. All known examples of the N­<sub>TB­</sub> phase occur in materials whose constituent mesogenic units are aromatic hydrocarbons. It is not clear if this is due to synthetic convenience or a <i>bona fide</i> structural requirement for a material to exhibit this phase of matter. In this work we demonstrate that materials consisting largely of saturated hydrocarbons could also give rise to this mesophase. Furthermore, replacement of 1,4-disubstituted benzene with <i>trans</i> 1,4-cyclohexane or even 1,4-cubane does not especially alter the transition temperatures of the resulting material nor does it appear to impact upon the heliconical tilt angle, suggesting the local structure of the phase is unperturbed. Calculating the probability distribution of bend angles reveals that the choice of isosteric group has little impact on the overall molecular shape, demonstrating the shape-driven nature of the N<sub>TB</sub> phase. </p>


Tetrahedron ◽  
2020 ◽  
pp. 131870
Author(s):  
Yuki Arakawa ◽  
Kenta Komatsu ◽  
Yuko Ishida ◽  
Kazunobu Igawa ◽  
Hideto Tsuji

2021 ◽  
Vol 155 (5) ◽  
pp. 054903
Author(s):  
Jan-Christoph Eichler ◽  
Robert A. Skutnik ◽  
Marco G. Mazza ◽  
Martin Schoen

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 831
Author(s):  
Davide Revignas ◽  
Alberta Ferrarini

In the past decade, much evidence has been provided for an unusually low cost for bend deformations in the nematic phase of bent-core mesogens and bimesogens (liquid crystal dimers) having a bent shape on average. Recently, an analogous effect was observed for the splay mode of bent-core mesogens with an acute apical angle. Here, we present a systematic computational investigation of the Frank elastic constants of nematics made of V-shaped particles, with bend angles ranging from acute to obtuse. We show that by tuning this angle, the elastic behavior switches from bend dominated (K33>K11) to splay dominated (K11>K33), with anomalously low values of the splay and the bend constant, respectively. This is related to a change in the shape polarity of particles, which is associated with the emergence of polar order, longitudinal for splay and transversal for bend deformations. Crucial to this study is the use of a recently developed microscopic elastic theory, able to account for the interplay of mesogen morphology and director deformations.


2021 ◽  
Vol 22 (21) ◽  
pp. 11980
Author(s):  
Tengfei Miao ◽  
Xiaoxiao Cheng ◽  
Yilin Qian ◽  
Yaling Zhuang ◽  
Wei Zhang

Flexible construction of permanently stored supramolecular chirality with stimulus-responsiveness remains a big challenge. Herein, we describe an efficient method to realize the transfer and storage of chirality in intrinsically achiral films of a side-chain polymeric liquid crystal system by combining chiral doping and cross-linking strategy. Even the helical structure was destroyed by UV light irradiation, the memorized chiral information in the covalent network enabled complete self-recovery of the original chiral superstructure. These results allowed the building of a novel chiroptical switch without any additional chiral source in multiple types of liquid crystal polymers, which may be one of the competitive candidates for use in stimulus-responsive chiro-optical devices.


Sign in / Sign up

Export Citation Format

Share Document