scholarly journals Eliciting Student Thinking About Acid-Base Reactions via App and Paper-Pencil Based Problem Solving

Author(s):  
Michael N. Petterson ◽  
Field M. Watts ◽  
Emma P. Snyder-White ◽  
Sabrina R. Archer ◽  
Ginger V. Shultz ◽  
...  

Research has demonstrated that students often struggle with learning acid-base reaction mechanisms in organic chemistry. One response is the development of educational applications to support instruction and learning. However, research is needed to characterize how the modality influences students’ thinking about acid-base reaction mechanisms. This study used think-aloud interviews conducted with undergraduate students in their first semester of organic chemistry to understand how they worked through acid-base reactions using either paper-pencil or an app. Analysis of the interviews indicates that students recognize the steps of acid-base reactions, but do not always apply the underlying concepts when determining how a reaction will proceed. The modality somewhat influenced students’ thinking, in that the app prevented students from making chemically unreasonable mistakes. However, some students relied on the cues it provided, which could potentially be problematic when they are required to respond to assessments that do not provide these cues. Our results suggest that instructors should emphasize the conceptual grounding for the rules and steps that govern acid-base reactions to promote chemical thinking about the relationships between the reaction components and how those influence reaction outcomes, as well as support students to think critically about the chemical information contained within the modalities they are using.

2020 ◽  
Vol 21 (3) ◽  
pp. 878-892 ◽  
Author(s):  
Michael N. Petterson ◽  
Field M. Watts ◽  
Emma P. Snyder-White ◽  
Sabrina R. Archer ◽  
Ginger V. Shultz ◽  
...  

An understanding of acid–base reactions is necessary for success in chemistry courses and relevant to careers outside of chemistry, yet research has demonstrated that students often struggle with learning acid–base reaction mechanisms in organic chemistry. One response to this challenge is the development of educational applications to support instruction and learning. The development of these supports also creates an opportunity to probe students’ thinking about organic chemistry reaction mechanisms using multiple modalities—i.e., using an app interface or the traditional paper–pencil. This study used think-aloud interviews conducted with undergraduate students in their first semester of organic chemistry to understand how they worked through two acid–base reactions using either paper–pencil or an app. Analysis of the interviews indicates that students from both groups recognize the steps of acid–base reactions, but do not always apply the underlying concepts, such as assessment of pKa values or resonance, when determining how a reaction will proceed. The modality seemed to somewhat influence students’ thinking, as the app prevented students from making chemically unreasonable mistakes. However, some students relied on the cues it provided, which could potentially be problematic when they are required to respond to assessments that do not provide these cues. Our results suggest that instructors should emphasize the conceptual grounding for the steps that govern acid–base reactions to promote chemical thinking about the relationships between the reaction components and how those influence reaction outcomes, as well as support students to think critically about the chemical information contained within the modalities they are using.


2019 ◽  
Author(s):  
Michael N. Petterson ◽  
Field M. Watts ◽  
Emma P. Snyder-White ◽  
Sabrina R. Archer ◽  
Ginger V. Shultz ◽  
...  

Research has demonstrated that students often struggle with learning acid-base reaction mechanisms in organic chemistry. One response is the development of educational applications to support instruction and learning. However, research is needed to characterize how the modality influences students’ thinking about acid-base reaction mechanisms. This study used think-aloud interviews conducted with undergraduate students in their first semester of organic chemistry to understand how they worked through acid-base reactions using either paper-pencil or an app. Analysis of the interviews indicates that students recognize the steps of acid-base reactions, but do not always apply the underlying concepts when determining how a reaction will proceed. The modality somewhat influenced students’ thinking, in that the app prevented students from making chemically unreasonable mistakes. However, some students relied on the cues it provided, which could potentially be problematic when they are required to respond to assessments that do not provide these cues. Our results suggest that instructors should emphasize the conceptual grounding for the rules and steps that govern acid-base reactions to promote chemical thinking about the relationships between the reaction components and how those influence reaction outcomes, as well as support students to think critically about the chemical information contained within the modalities they are using.


Author(s):  
Eleni K. Zotos ◽  
Jordan J. Tyo ◽  
Ginger V. Shultz

Many recent studies document the difficulties that students experience when learning organic chemistry, often due to the complex visualization and reasoning skills required to successfully understand the ways molecules interact in specific environments. Many of these studies call on instructors to improve their teaching strategies to support students’ learning of organic chemistry mechanisms, but few have focused on instructors’ knowledge of organic chemistry and how they use their knowledge to teach this topic. To investigate university instructors’ knowledge for teaching organic chemistry mechanisms, we utilized a task-based think-aloud interview protocol where graduate teaching assistants (GTAs) and faculty instructors assessed authentic undergraduate student responses to three organic chemistry mechanism questions. We describe this knowledge for a substitution, an acid–base, and an addition reaction. For all mechanisms, we describe how GTA participants’ knowledge for teaching related to their content knowledge. This result revealed differences between GTA and faculty participants’ knowledge for teaching mechanisms that were specific to features of each mechanistic task. For example, in a substitution reaction question, all faculty participants recognized and explained issues with a student's drawing of a transition state and apparent understanding of partial bonds. These features of the student's drawing were not recognized by any GTA participants, who focused instead on the student's prior knowledge about ionic bonding. These findings qualitatively illuminate strengths and weaknesses in graduate students’ knowledge for teaching which can guide how they are supported as instructors.


2019 ◽  
Vol 97 (10) ◽  
pp. 711-721 ◽  
Author(s):  
Amber J. Dood ◽  
Kimberly B. Fields ◽  
Daniel Cruz-Ramírez de Arellano ◽  
Jeffrey R. Raker

A well-developed understanding of the Lewis acid–base model is highly important for the understanding of organic chemistry. As such, students should receive instruction and be assessed on use of the model. Online tutorials and constructed-response items provide a means for confirming that students have a well-developed conceptualization of the Lewis acid–base model. In a prior study, a predictive logistic regression model was presented that can be used with constructed-response assessment items to determine use of a Lewis acid–base model in written responses. In this study, we use that predictive model to evaluate the effectiveness of a tutorial designed to promote meaningful understanding of the Lewis acid–base model in three different instructional contexts: first-semester organic chemistry students before summative assessment, first-semester organic chemistry students after summative assessment, and second-semester organic chemistry students. Additionally, we evaluated the learning gains of one set of first-semester students after a 3-week time delay. McNemar’s test results suggest that the tutorial had a net positive impact in all three instructional contexts, with the most significant impact observed with the second-semester students. This work has implications for further development of literature-based tutorials to promote meaningful understanding of organic chemistry reaction mechanisms assessed by constructed-response items.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Sachin Nedungadi ◽  
Sue H. Paek ◽  
Corina E. Brown

AbstractUndergraduate organic chemistry has been found to be historically difficult for students and one area where students struggle is organic reaction mechanisms. The difficulties students face with reaction mechanisms has been a source of interest in chemical education research but most studies done have been purely qualitative. An assessment tool that could be used on a large-scale for instructors to gauge the difficulties their students face, would be useful. The aim of this pilot study is to use Rasch analysis to establish the validity and reliability of the concepts important for developing proficiency in organic reaction mechanisms inventory (RMCPI). The test, containing 25 items, was administered to first semester organic chemistry students (N = 44) at a mid-sized university. The data was analyzed using Rasch techniques to explore the dimensionality of the instrument, the difficulty of the items, the item fit, and the reliability. The results indicate that the instrument is unidimensional and most of the items fit well to the dichotomous Rasch model. The test was found to be difficult and this will be explored further by increasing the sample size, administering the test to students from other universities and increasing the number of items on the inventory.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sachin Nedungadi ◽  
Michael D. Mosher ◽  
Sue Hyeon Paek ◽  
Richard M. Hyslop ◽  
Corina E. Brown

Abstract The fundamental concepts for organic reaction mechanisms inventory (FC-ORMI) is a multiple-choice instrument designed to assess students’ conception of fundamental concepts for understanding organic reaction mechanisms. The concepts were identified from open-ended interviews and a national survey of organic chemistry instructors reported in a previous study. This manuscript describes the development of the inventory items related to these identified concepts and the psychometric analysis of the instrument. In the developmental stage, open-ended questions were administered to first-semester organic chemistry students (N = 138), and open-ended interviews were conducted with students (N = 22) from the same pool to gain insight into their thought processes. The answers revealed alternate conceptions which were used to formulate distractors for the inventory. A pilot version and a beta version of the inventory were administered to 105 and 359 first-semester organic chemistry students, respectively. From these administrations, the 26-item alpha version was developed and administered to first-semester undergraduate organic chemistry students (N = 753). Psychometric analysis was conducted at the item and test level using Classical Test Theory and Rasch analysis. The results indicate that the items on the FC-ORMI function well to reveal students’ alternate conceptions. The instrument meets the acceptable standards of validity and reliability for concept inventories.


2017 ◽  
Vol 18 (2) ◽  
pp. 353-374 ◽  
Author(s):  
Kelli R. Galloway ◽  
Carlee Stoyanovich ◽  
Alison B. Flynn

Research on mechanistic thinking in organic chemistry has shown that students attribute little meaning to the electron-pushing (i.e., curved arrow) formalism. At the University of Ottawa, a new curriculum has been developed in which students are taught the electron-pushing formalism prior to instruction on specific reactions—this formalism is part of organic chemistry's language. Students then learn reactions according to the pattern of their governing mechanism and in order of increasing complexity. If students are fluent in organic chemistry's language, they should have lower cognitive load demands when learning new reactions, and be better positioned to connect the three levels of chemistry's triplet (i.e., Johnstone's triangle). We developed a qualitative research protocol to explore how students use and interpret the mechanistic language. Twenty-nine first-semester organic chemistry students were interviewed, in which they were asked to (1) explain a mechanism, given all the starting materials, intermediates, products, and electron-pushing arrows, (2) draw in arrows for a reaction mechanism, given the starting materials and products of each step, and (3) predict the product of a reaction step, given the starting materials and electron-pushing arrows for that step. To investigate the students’ ideas about mechanistic language rather than their knowledge of specific reactions, we selected reactions for the interview guide that had not yet been taught. Following transcription, we analyzed the interviews using constant comparative analysis to explore how students used and interpreted the mechanistic language. Four categories of student thinking emerged with electron movement underlying students’ thinking throughout the interviews. Herein, we discuss these categories, students’ interpretation of the symbolism, connections to learning theory, and implications for teaching, learning, and research.


2021 ◽  
Author(s):  
Jacky M. Deng ◽  
Alison B. Flynn

<div><div><p>In a world facing complex global challenges, citizens around the world need to be able to engage in scientific reasoning and argumentation supported by evidence. Chemistry educators can support students in developing these skills by providing opportunities to justify how and why phenomena occur, including on assessments. However, little is known about how students’ arguments vary in different content areas and how their arguments might change between tasks. In this work, we investigated the reasoning, granularity, and comparisons made in students’ arguments in organic chemistry exam questions. The first question asked them to decide and justify which of three bases could drive an acid–base equilibrium to products (Q1, <i>N </i>= 170). The majority of arguments exhibited relational reasoning, relied on phenomenological concepts, and explicitly compared between possible claims. We then compared the arguments from Q1 with arguments from a second question on the same final exam: deciding and justifying which of two reaction mechanisms was more plausible (Q2, <i>N</i> = 159). The arguments in the two questions differed in terms of their reasoning, granularity, and comparisons. We discuss how course expectations related to the two questions may have contributed to these differences, as well as how educators might use these findings to further support students’ argumentation skill development in their courses.</p></div><p></p></div><p></p>


Author(s):  
Field M. Watts ◽  
Ina Zaimi ◽  
David Kranz ◽  
Nicole Graulich ◽  
Ginger V. Shultz

Reasoning about organic chemistry reaction mechanisms requires engagement with multiple concepts and necessitates balancing the relative influence of different chemical properties. A goal of organic chemistry instruction is to support students with engaging in this type of reasoning. In this study, we describe our use of case comparison problems to elicit students’ reasoning about acyl transfer reaction mechanisms across a semester. Using an instrumental case study methodology, we analysed three students’ reasoning across three time points: in a pre-interview at the beginning of the semester, on their written responses to one implementation of an in-class scaffold activity, and in a post-interview near the middle of the semester. Through the theoretical lens of Hammer's resources framework, we analysed the resources that students activated when approaching the case comparison problems. We characterized how students used each resource to support their reasoning, alongside characterizing how students weighed the different resources they activated. Our findings indicate that the case comparison problems activated a number of resources for each student across the time points by encouraging students to relate the surface-feature differences between reactions with the associated underlying properties. Students generally used resources, such as resonance and steric effects, in similar ways to support their reasoning across the time points. The study also illustrates the range in students’ abilities to weigh multiple conceptual influences and how this ability might change across the semester. This case study has implications for future research exploring how students reason with multiple concepts and for instructors seeking to implement activities that support students’ reasoning with case comparison problems.


1989 ◽  
Vol 54 (5) ◽  
pp. 1219-1226 ◽  
Author(s):  
Enric Casassas ◽  
Miquel Esteban ◽  
Santiago Alier

The reduction of several o,o'-dihydroxyazo-compounds is studied by means of pulse polarographic techniques (DPP, NPP and RPP). The compounds studied are the following: 2-(2'-hydroxyphenylazo)-phenol (o,o'-dihydroxyazobenzene), 1-(2'-hydroxy-1'-naphthylazo)-2-naphthol-4-sulphonic acid (calcon or Eriochrome Blue Black R), 1-(2'-hydroxy-4'-sulpho-1'-naphthylazo)-2-hydroxy-3-naphthoic acid (calcon carboxylic acid), and 1-(1'-hydroxy-2'-naphthylazo)-6-nitro-2-naphthol-4-sulphonic acid (Eriochrome Black T). Correlations between Ip and Epand experimental variables (pH, T, conc.) and instrumental parameters (dropping time, t, and pulse magnitude, ΔE) are established. Reaction mechanisms formerly proposed are discussed on the basis of the new obtained results, and the ranges are defined where adsorption and/or acid-base catalysis are operative.


Sign in / Sign up

Export Citation Format

Share Document