A 3D-printed Microfluidic System for Automated and Near Real-time Quantitation of Biofilm-induced indole

Author(s):  
Giraso Kabandana ◽  
Curtis G. Jones ◽  
Sahra Khan Sharifi ◽  
Chengpeng Chen

We developed a novel microfluidic system that enables automated and near real-time quantitation of indole release kinetics from biofilms.

2019 ◽  
Author(s):  
Giraso Kabandana ◽  
Curtis G. Jones ◽  
Sahra Khan Sharifi ◽  
Chengpeng Chen

We developed a novel microfluidic system that enables automated and near real-time quantitation of indole release kinetics from biofilms.


2018 ◽  
Author(s):  
Anna Adams ◽  
Radha Krishna Murthy Bulusu ◽  
Nikita Mukhitov ◽  
Jose Mendoza-Cortes ◽  
Michael Roper

In this work, we developed a microfluidic bioreactor for optimizing growth and maintaining structure and function of HepG2, and when desired, the device could be removed and the extracellular output from the bioreactor combined with enzymatic glucose reagents into a droplet-based microfluidic system. The intensity of the resulting fluorescent assay product in the droplets was measured, and was directly correlated to glucose concentration, allowing the effect of insulin on glucose consumption in the HepG2 cells to be observed and quantified online and in near real-time.


2018 ◽  
Author(s):  
Anna Adams ◽  
Radha Krishna Murthy Bulusu ◽  
Nikita Mukhitov ◽  
Jose Mendoza-Cortes ◽  
Michael Roper

In this work, we developed a microfluidic bioreactor for optimizing growth and maintaining structure and function of HepG2, and when desired, the device could be removed and the extracellular output from the bioreactor combined with enzymatic glucose reagents into a droplet-based microfluidic system. The intensity of the resulting fluorescent assay product in the droplets was measured, and was directly correlated to glucose concentration, allowing the effect of insulin on glucose consumption in the HepG2 cells to be observed and quantified online and in near real-time.


2021 ◽  
Vol 1153 ◽  
pp. 338296
Author(s):  
Hana Sklenářová ◽  
Michaela Rosecká ◽  
Burkhard Horstkotte ◽  
Petr Pávek ◽  
Manuel Miró ◽  
...  

Author(s):  
Mahima Singh ◽  
Sriramakamal Jonnalagadda

AbstractThis study evaluates the suitability of 3D printed biodegradable mats to load and deliver the topical antibiotic, neomycin, for up to 3 weeks in vitro. A 3D printer equipped with a hot melt extruder was used to print bandage-like wound coverings with porous sizes appropriate for cellular attachment and viability. The semicrystalline polyester, poly-l-lactic acid (PLLA) was used as the base polymer, coated (post-printing) with polyethylene glycols (PEGs) of MWs 400 Da, 6 kDa, or 20 kDa to enable manipulation of physicochemical and biological properties to suit intended applications. The mats were further loaded with a topical antibiotic (neomycin sulfate), and cumulative drug-release monitored for 3 weeks in vitro. Microscopic imaging as well as Scanning Electron Microscopy (SEM) studies showed pore dimensions of 100 × 400 µm. These pore dimensions were achieved without compromising mechanical strength; because of the “tough” individual fibers constituting the mat (Young’s Moduli of 50 ± 20 MPa and Elastic Elongation of 10 ± 5%). The in vitro dissolution study showed first-order release kinetics for neomycin during the first 20 h, followed by diffusion-controlled (Fickian) release for the remaining duration of the study. The release of neomycin suggested that the ability to load neomycin on to PLLA mats increases threefold, as the MW of the applied PEG coating is lowered from 20 kDa to 400 Da. Overall, this study demonstrates a successful approach to using a 3D printer to prepare porous degradable mats for antibiotic delivery with potential applications to dermal regeneration and tissue engineering.


Micromachines ◽  
2015 ◽  
Vol 6 (9) ◽  
pp. 1289-1305 ◽  
Author(s):  
Mohamed Yafia ◽  
Ali Ahmadi ◽  
Mina Hoorfar ◽  
Homayoun Najjaran

2017 ◽  
Vol 17 ◽  
pp. 135-142 ◽  
Author(s):  
Oliver Holzmond ◽  
Xiaodong Li

The Analyst ◽  
2021 ◽  
Author(s):  
Karel Boissinot ◽  
Régis Peytavi ◽  
Sebastien Chapdelaine ◽  
Matthias Geissler ◽  
Maurice Boissinot ◽  
...  

DNA hybridization phenomena occurring on solid supports are not understood as clearly as aqueous phase hybridizations and mathematical models cannot predict some empirically obtained results. Ongoing research has identified important...


Sign in / Sign up

Export Citation Format

Share Document