scholarly journals Rethinking the Magnetic Properties of Lepidocrocite: A Density Functional Theory and Cluster Expansion Study

Author(s):  
Daniel Pope ◽  
Aurora Clark ◽  
Micah Prange ◽  
Kevin Rosso

<div> <div> <div> <p>The iron oxyhydroxide lepidocrocite (γ-FeOOH) is an abundant mineral critical to a number of chemical and technological applications. Of particular interest is the ground state and finite temperature magnetic order, and the subsequent impact this has upon crystal properties. The magnetic properties, investigated in this work are governed primarily through superexchange interactions, and have been calculated using density functional theory and cluster expansion methods. Quantification of these exchange terms has facilitated the determination of the ground state magneto-crystalline structure and subsequent calculation of its lattice constants, elastic moduli, cohesive enthalpy, and electronic density of states. Further, using a collinear magnetic configuration model, the magnetic heat capacity versus temperature has been studied and the N ́eel temperature obtained. </p> </div> </div> </div>

2020 ◽  
Author(s):  
Daniel Pope ◽  
Aurora Clark ◽  
Micah Prange ◽  
Kevin Rosso

<div> <div> <div> <p>The iron oxyhydroxide lepidocrocite (γ-FeOOH) is an abundant mineral critical to a number of chemical and technological applications. Of particular interest is the ground state and finite temperature magnetic order, and the subsequent impact this has upon crystal properties. The magnetic properties, investigated in this work are governed primarily through superexchange interactions, and have been calculated using density functional theory and cluster expansion methods. Quantification of these exchange terms has facilitated the determination of the ground state magneto-crystalline structure and subsequent calculation of its lattice constants, elastic moduli, cohesive enthalpy, and electronic density of states. Further, using a collinear magnetic configuration model, the magnetic heat capacity versus temperature has been studied and the N ́eel temperature obtained. </p> </div> </div> </div>


2011 ◽  
Vol 22 (04) ◽  
pp. 359-369
Author(s):  
M. SAMAH ◽  
B. MOULA

The lowest-energy geometric and isomers of freestanding Co n clusters (n = 2 - 10) and their corresponding magnetic moments have been studied using the Siesta code based on pseudopotential density-functional theory. The calculated results show that there are many isomers near the ground state. Different isomers hold different magnetic moment. The stability study shows that among the investigated clusters, the hexamer one is the most stable and is the magic cluster. Dissociation channels energy are also studied.


2015 ◽  
Vol 754-755 ◽  
pp. 757-761
Author(s):  
Abdullah Chik ◽  
S. Saad ◽  
Cheow Keat Yeoh ◽  
R.M. Zaki ◽  
F. Che Pa

The electronic structure of the perovskite manganites AlMnO3cubic crystal was presented. The calculations were made within density functional theory and PBE exchange correlations energy approximation. It was found that the crystal exhibit covalent bonding between Mn and O with superexchange mechanism. At groundstate, AlMnO3stabilizes in antiferromagnetic structure with semi metallic like nature at the ground state.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
L. Mikaeilzadeh ◽  
A. Tavana ◽  
F. Khoeini

AbstractIn this works, we study the electronic structure and magnetic properties of the Pr-Ni-Bi half-Heusler systems based on density functional theory. We use the σ GGA + U scheme to consider the effects of on-site electron-electron interactions. Results show that in contrast to the rough estimation of the total magnetic moment of the unit cell, based on the Slater-Pauling behavior in the half-Heusler systems, this system has an antiferromagnetic ground state because of the localized Pr-f electrons. By increasing the magnitude of the effective U parameter, band-inversion occurs in the band structure of this system, which shows the possibility of topological state occurrence.


2020 ◽  
Vol 128 (10) ◽  
pp. 103906
Author(s):  
Daniel J. Pope ◽  
Aurora E. Clark ◽  
Kevin M. Rosso ◽  
Micah P. Prange

2015 ◽  
Vol 29 (27) ◽  
pp. 1550184 ◽  
Author(s):  
Xiang-Yu Zheng ◽  
Xiu-Rong Zhang ◽  
Ling-Ling Zhang ◽  
Gao-Kang Hu

In this paper, the structure and magnetic properties of WnH2 (n = 7–12) clusters have been systematically investigated using density functional theory (DFT) within the generalized gradient approximation (GGA). The result indicates that the ground state structures of WnH2 clusters are generated when H2 dissociative adsorbed on the atop site of Wn clusters. W8H2 and W[Formula: see text]H2 clusters are found to be more stable than other clusters. The adsorption abilities of Wn clusters are related to W–H bond length, adsorption energy and the charge transfer between H and W clusters as well as the electronic density of state.


2016 ◽  
Vol 3 (1) ◽  
pp. 89 ◽  
Author(s):  
Shalika Ram Bhandari ◽  
Ram Kumar Thapa ◽  
Madhav Prasad Ghimire

<p>Electronic and magnetic properties of La<sub>4</sub>Ba<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub> had been studied by first-principles density functional theory (DFT). Based on the DFT calculation La<sub>4</sub>Ba<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub> is found to have a ferromagnetic (FM) ground state. The material undergo charge-transfer type insulator to Mott-Hubbard type insulator transition which happens due to strong correlation in La-4f and Cu-3d states. Our results show that the 3d electrons of Cu hybridize strongly with O-2p states near the Fermi level giving rise to the insulating state of La<sub>4</sub>Ba<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub>. Our study suggests that the enhanced magnetic moment is a result of itinerant exchange rather than the exchange interaction involving individual ions of Cu atoms. The total magnetic moment calculated in the present studies is 2 μ<sub>B</sub> per unit cell for La<sub>4</sub>Ba<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub>.</p><p>Journal of Nepal Physical Society Vol.3(1) 2015: 89-96</p>


RSC Advances ◽  
2015 ◽  
Vol 5 (100) ◽  
pp. 82357-82362 ◽  
Author(s):  
Bo Meng ◽  
Wen-Zhi Xiao ◽  
Ling-Ling Wang ◽  
Li Yue ◽  
Song Zhang ◽  
...  

By using external strain, the magnetic ground state can be deliberately tuned, which would be propitious to their advanced applications.


Sign in / Sign up

Export Citation Format

Share Document