scholarly journals Sodium Bis(oxalato)borate (NaBOB) in Trimethyl Phosphate: A Fire-Extinguishing, Fluorine-Free, and Low-Cost Electrolyte for Full-Cell Sodium-Ion Batteries

Author(s):  
Ronnie Mogensen ◽  
Simon Colbin ◽  
Ashok Menon ◽  
Erik Björklund ◽  
Reza Younesi

Sodium-ion batteries based on all-naturally-abundant elements, in which no cobalt, nickel, copper, and fluorine is used, can lead to a major breakthrough in making batteries more sustainable. Safety aspects -in particular flammability of electrolytes- in the state-of-theart battery technology is another important concern, especially for applications in which large numbers of cells are employed. Non-flammable battery electrolytes studied so far are based on highly fluorinated compounds or high salt concentrations, which suffer from high cost and toxicity. We here propose an electrolyte based on a single solvent and lowcost and fluorine-free salt at the lower range of “standard” concentrations. Our results show -for the first time- that sodium bis(oxalato)borate (NaBOB) is soluble in the nonflammable solvent trimethyl phosphate (TMP). This finding enables a non-flammable electrolyte with high ionic conductivity and promising electrochemical performance in fullcell sodium-ion batteries. An electrolyte of 0.5 M NaBOB in TMP provides ionic conductivity of 5 mS cm-1 at room temperature, which is comparable to commonly used electrolytes based on sodium hexafluorophosphate (NaPF6) and organic carbonate solvents. The proposed electrolyte shows the Coulombic efficiency of above 80% in the first cycle, which increased to about 97% from the second cycle in sodium-ion battery fullcells consisting of a hard carbon anode and Prussian white cathode. This work opens up new opportunities to design safe electrolytes which can further be optimized with electrolyte additives such as vinylene carbonate for industrial applications.<br>

2020 ◽  
Author(s):  
Ronnie Mogensen ◽  
Simon Colbin ◽  
Ashok Menon ◽  
Erik Björklund ◽  
Reza Younesi

Sodium-ion batteries based on all-naturally-abundant elements, in which no cobalt, nickel, copper, and fluorine is used, can lead to a major breakthrough in making batteries more sustainable. Safety aspects -in particular flammability of electrolytes- in the state-of-theart battery technology is another important concern, especially for applications in which large numbers of cells are employed. Non-flammable battery electrolytes studied so far are based on highly fluorinated compounds or high salt concentrations, which suffer from high cost and toxicity. We here propose an electrolyte based on a single solvent and lowcost and fluorine-free salt at the lower range of “standard” concentrations. Our results show -for the first time- that sodium bis(oxalato)borate (NaBOB) is soluble in the nonflammable solvent trimethyl phosphate (TMP). This finding enables a non-flammable electrolyte with high ionic conductivity and promising electrochemical performance in fullcell sodium-ion batteries. An electrolyte of 0.5 M NaBOB in TMP provides ionic conductivity of 5 mS cm-1 at room temperature, which is comparable to commonly used electrolytes based on sodium hexafluorophosphate (NaPF6) and organic carbonate solvents. The proposed electrolyte shows the Coulombic efficiency of above 80% in the first cycle, which increased to about 97% from the second cycle in sodium-ion battery fullcells consisting of a hard carbon anode and Prussian white cathode. This work opens up new opportunities to design safe electrolytes which can further be optimized with electrolyte additives such as vinylene carbonate for industrial applications.<br>


2020 ◽  
Vol 3 (5) ◽  
pp. 4974-4982
Author(s):  
Ronnie Mogensen ◽  
Simon Colbin ◽  
Ashok Sreekumar Menon ◽  
Erik Björklund ◽  
Reza Younesi

2018 ◽  
Vol 11 (06) ◽  
pp. 1830003 ◽  
Author(s):  
Ismaila El Moctar ◽  
Qiao Ni ◽  
Ying Bai ◽  
Feng Wu ◽  
Chuan Wu

Recent results have shown that sodium-ion batteries complement lithium-ion batteries well because of the low cost and abundance of sodium resources. Hard carbon is believed to be the most promising anode material for sodium-ion batteries due to the expanded graphene interlayers, suitable working voltage and relatively low cost. However, the low initial coulombic efficiency and rate performance still remains challenging. The focus of this review is to give a summary of the recent progresses on hard carbon for sodium-ion batteries including the impact of the uniqueness of carbon precursors and strategies to improve the performance of hard carbon; highlight the advantages and performances of the hard carbon. Additionally, the current problems of hard carbon for sodium-ion batteries and some challenges and perspectives on designing better hard-carbon anode materials are also provided.


2016 ◽  
Vol 4 (34) ◽  
pp. 13046-13052 ◽  
Author(s):  
Pin Liu ◽  
Yunming Li ◽  
Yong-Sheng Hu ◽  
Hong Li ◽  
Liquan Chen ◽  
...  

This study reports a hard carbon material derived from a waste biomass of corn cob and the influence of carbonized temperature on electrochemical performance. This study provides a promising anode material with low cost, high initial coulombic efficiency and excellent cycle performance, making sodium-ion batteries closer to practical applications.


2019 ◽  
Vol 7 (27) ◽  
pp. 16149-16160 ◽  
Author(s):  
Jun Kang ◽  
Dae-Yeong Kim ◽  
Seen-Ae Chae ◽  
Nagahiro Saito ◽  
Si-Young Choi ◽  
...  

Generally, carbon anode materials used in sodium-ion batteries do not exhibit good electrochemical performance because of low coulombic efficiency (CE).


2019 ◽  
Vol 14 ◽  
pp. 102404 ◽  
Author(s):  
Ghulam Yasin ◽  
Muhammad Abubaker Khan ◽  
Waheed Qamar Khan ◽  
Tahira Mehtab ◽  
Rashid Mustafa Korai ◽  
...  

Author(s):  
Minghao Zhang ◽  
Yu Li ◽  
Feng Wu ◽  
Zhaohua Wang ◽  
Ying Bai ◽  
...  

Porous carbon material is regarded as one of the promising candidates of sodium-ion batteries (SIBs) due to its fast sodium storage performance. However, the inadequate initial Coulombic efficiency (ICE) resulting...


ACS Omega ◽  
2017 ◽  
Vol 2 (4) ◽  
pp. 1687-1695 ◽  
Author(s):  
Kun Wang ◽  
Yu Jin ◽  
Shixiong Sun ◽  
Yangyang Huang ◽  
Jian Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document