scholarly journals Drug Binding Dynamics of the Dimeric SARS-CoV-2 Main Protease, Determined by Molecular Dynamics Simulation

Author(s):  
Teruhisa S. KOMATSU ◽  
Noriaki Okimoto ◽  
Yohei M. KOYAMA ◽  
Yoshinori HIRANO ◽  
Gentaro MORIMOTO ◽  
...  

<div> <div> <div> <p>We performed molecular dynamics simulation of the dimeric SARS-CoV-2 (severe acute respiratory syndrome corona virus 2) main protease (Mpro) to examine the binding dynamics of small molecular ligands. Seven HIV inhibitors, darunavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, and tipranavir, were used as the potential lead drugs to investigate access to the drug binding sites in Mpro. The frequently accessed sites on Mpro were classified based on contacts between the ligands and the protein, and the differences in site distributions of the encounter complex were observed among the ligands. All seven ligands showed binding to the active site at least twice in 28 simulations of 200 ns each. We further investigated the variations in the complex structure of the active site with the ligands, using microsecond order simulations. Results revealed a wide variation in the shapes of the binding sites and binding poses of the ligands. Additionally, the C-terminal region of the other chain often interacted with the ligands and the active site. Collectively, these findings indicate the importance of dynamic sampling of protein- ligand complexes and suggest the possibilities of further drug optimisations. <br></p><p><br></p><p><br> </p><div> <div> <div> <p>Raw trajectory data analysed in this paper and movie examples are available at the zenodo repository.<br></p> </div> </div> </div> </div> </div> </div>

2020 ◽  
Author(s):  
Teruhisa S. KOMATSU ◽  
Noriaki Okimoto ◽  
Yohei M. KOYAMA ◽  
Yoshinori HIRANO ◽  
Gentaro MORIMOTO ◽  
...  

<div> <div> <div> <p>We performed molecular dynamics simulation of the dimeric SARS-CoV-2 (severe acute respiratory syndrome corona virus 2) main protease (Mpro) to examine the binding dynamics of small molecular ligands. Seven HIV inhibitors, darunavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, and tipranavir, were used as the potential lead drugs to investigate access to the drug binding sites in Mpro. The frequently accessed sites on Mpro were classified based on contacts between the ligands and the protein, and the differences in site distributions of the encounter complex were observed among the ligands. All seven ligands showed binding to the active site at least twice in 28 simulations of 200 ns each. We further investigated the variations in the complex structure of the active site with the ligands, using microsecond order simulations. Results revealed a wide variation in the shapes of the binding sites and binding poses of the ligands. Additionally, the C-terminal region of the other chain often interacted with the ligands and the active site. Collectively, these findings indicate the importance of dynamic sampling of protein- ligand complexes and suggest the possibilities of further drug optimisations. <br></p><p><br></p><p><br> </p><div> <div> <div> <p>Raw trajectory data analysed in this paper and movie examples are available at the zenodo repository.<br></p> </div> </div> </div> </div> </div> </div>


2020 ◽  
Author(s):  
Teruhisa S. KOMATSU ◽  
Noriaki Okimoto ◽  
Yohei M. KOYAMA ◽  
Yoshinori HIRANO ◽  
Gentaro MORIMOTO ◽  
...  

<div> <div> <div> <p>We performed molecular dynamics simulation of the dimeric SARS-CoV-2 (severe acute respiratory syndrome corona virus 2) main protease (Mpro) to examine the binding dynamics of small molecular ligands. Seven HIV inhibitors, darunavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, and tipranavir, were used as the potential lead drugs to investigate access to the drug binding sites in Mpro. The frequently accessed sites on Mpro were classified based on contacts between the ligands and the protein, and the differences in site distributions of the encounter complex were observed among the ligands. All seven ligands showed binding to the active site at least twice in 28 simulations of 200 ns each. We further investigated the variations in the complex structure of the active site with the ligands, using microsecond order simulations. Results revealed a wide variation in the shapes of the binding sites and binding poses of the ligands. Additionally, the C-terminal region of the other chain often interacted with the ligands and the active site. Collectively, these findings indicate the importance of dynamic sampling of protein- ligand complexes and suggest the possibilities of further drug optimisations. <br></p><p><br></p><p><br> </p><div> <div> <div> <p>Raw trajectory data analysed in this paper and movie examples are available at the zenodo repository.<br></p> </div> </div> </div> </div> </div> </div>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Teruhisa S. Komatsu ◽  
Noriaki Okimoto ◽  
Yohei M. Koyama ◽  
Yoshinori Hirano ◽  
Gentaro Morimoto ◽  
...  

Abstract We performed molecular dynamics simulation of the dimeric SARS-CoV-2 (severe acute respiratory syndrome corona virus 2) main protease (Mpro) to examine the binding dynamics of small molecular ligands. Seven HIV inhibitors, darunavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, and tipranavir, were used as the potential lead drugs to investigate access to the drug binding sites in Mpro. The frequently accessed sites on Mpro were classified based on contacts between the ligands and the protein, and the differences in site distributions of the encounter complex were observed among the ligands. All seven ligands showed binding to the active site at least twice in 28 simulations of 200 ns each. We further investigated the variations in the complex structure of the active site with the ligands, using microsecond order simulations. Results revealed a wide variation in the shapes of the binding sites and binding poses of the ligands. Additionally, the C-terminal region of the other chain often interacted with the ligands and the active site. Collectively, these findings indicate the importance of dynamic sampling of protein–ligand complexes and suggest the possibilities of further drug optimisations.


2021 ◽  
Vol 12 (4) ◽  
pp. 5591-5600

In this study, Crocin, Digitoxigenin, Beta-Eudesmol, and Favipiravir were docked in the active site of SARS-CoV-2 main protease (PDB code: 6LU7). The docking study was followed by Molecular Dynamics simulation. The result indicates that Crocin and Digitoxigenin are the structures with the best affinity in the studied enzyme's binding site. Still, Molecular Dynamics simulation showed that Digitoxigenin is the molecule that fits better in the active site of the main protease. Therefore, this molecule could have a more potent antiviral treatment of COVID-19 than the other three studied compounds.


2021 ◽  
Vol 12 (6) ◽  
pp. 7239-7248

The novel coronavirus, recognized as COVID-19, is the cause of an infection outbreak in December 2019. The effect of temperature and pH changes on the main protease of SARS-CoV-2 were investigated using all-atom molecular dynamics simulation. The obtained results from the root mean square deviation (RMSD) and root mean square fluctuations (RMSF) analyses showed that at a constant temperature of 25℃ and pH=5, the conformational change of the main protease is more significant than that of pH=6 and 7. Also, by increasing temperature from 25℃ to 55℃ at constant pH=7, a remarkable change in protein structure was observed. The radial probability of water molecules around the main protease was decreased by increasing temperature and decreasing pH. The weakening of the binding energy between the main protease and water molecules due to the increasing temperature and decreasing pH has reduced the number of hydrogen bonds between the main protease and water molecules. Finding conditions that alter the conformation of the main protease could be fundamental because this change could affect the virus’s functionality and its ability to impose illness.


Sign in / Sign up

Export Citation Format

Share Document