scholarly journals Reversible Control of Gelatin Hydrogel Stiffness Using DNA Crosslinkers

Author(s):  
Alex Buchberger ◽  
Harpinder Saini ◽  
Kiarash Rahmani Eliato ◽  
Ryan Merkley ◽  
Yang Xu ◽  
...  

Biomaterials with dynamically tunable properties are critical for a range of applications in regenerative medicine and basic biology. In this work, we show the reversible control of gelatin methacrylate (GelMA) hydrogel stiffness through the use of DNA crosslinkers. We replaced some of the inter-GelMA crosslinks with double-stranded DNA, allowing for their removal via toehold-mediated strand displacement. The crosslinks could be restored by adding fresh dsDNA with complementary handles to the hydrogel. The elastic modulus (G’) of the hydrogels could be tuned between 500 and 1000 Pa, reversibly, over two cycles without degradation of performance. By functionalizing the gels with a second DNA strand, it was possible to control the crosslink density and a model ligand in an orthogonal fashion with two different displacement strands. Our results demonstrate the potential for DNA to reversibly control both stiffness and ligand presentation in a protein-based hydrogel, and will be useful for teasing apart the spatiotemporal behavior of encapsulated cells.

2020 ◽  
Author(s):  
Alex Buchberger ◽  
Harpinder Saini ◽  
Kiarash Rahmani Eliato ◽  
Ryan Merkley ◽  
Yang Xu ◽  
...  

Biomaterials with dynamically tunable properties are critical for a range of applications in regenerative medicine and basic biology. In this work, we show the reversible control of gelatin methacrylate (GelMA) hydrogel stiffness through the use of DNA crosslinkers. We replaced some of the inter-GelMA crosslinks with double-stranded DNA, allowing for their removal via toehold-mediated strand displacement. The crosslinks could be restored by adding fresh dsDNA with complementary handles to the hydrogel. The elastic modulus (G’) of the hydrogels could be tuned between 500 and 1000 Pa, reversibly, over two cycles without degradation of performance. By functionalizing the gels with a second DNA strand, it was possible to control the crosslink density and a model ligand in an orthogonal fashion with two different displacement strands. Our results demonstrate the potential for DNA to reversibly control both stiffness and ligand presentation in a protein-based hydrogel, and will be useful for teasing apart the spatiotemporal behavior of encapsulated cells.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Dmitriy A. Khodakov ◽  
Anastasia S. Khodakova ◽  
David M. Huang ◽  
Adrian Linacre ◽  
Amanda V. Ellis

2017 ◽  
Vol 121 (12) ◽  
pp. 2594-2602 ◽  
Author(s):  
Xiaoping Olson ◽  
Shohei Kotani ◽  
Bernard Yurke ◽  
Elton Graugnard ◽  
William L. Hughes

ChemPhysChem ◽  
2021 ◽  
Author(s):  
Hui Lv ◽  
Qian Li ◽  
Jiye Shi ◽  
Fei Wang ◽  
Chunhai Fan

Nano Letters ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 1368-1374
Author(s):  
Jinbo Zhu ◽  
Filip Bošković ◽  
Bao-Nguyen T. Nguyen ◽  
Jonathan R. Nitschke ◽  
Ulrich F. Keyser

Talanta ◽  
2019 ◽  
Vol 200 ◽  
pp. 487-493 ◽  
Author(s):  
Raja Chinnappan ◽  
Rawa Mohammed ◽  
Ahmed Yaqinuddin ◽  
Khalid Abu-Salah ◽  
Mohammed Zourob

2015 ◽  
Vol 58 (10) ◽  
pp. 1515-1523 ◽  
Author(s):  
Yafei Dong ◽  
Chen Dong ◽  
Fei Wan ◽  
Jing Yang ◽  
Cheng Zhang

Sign in / Sign up

Export Citation Format

Share Document