scholarly journals Geometric Analysis and Formability of the Cubic A2BX6 Vacancy Ordered Double Perovskite Structure

Author(s):  
Anjie Cheng ◽  
Chenyang Lyu ◽  
Tianyi Shi ◽  
Ziheng Wang ◽  
Robert Palgrave

<p>A geometric analysis of the cubic A<sub>2</sub>BX<sub>6</sub> structure commonly formed by metal halides is presented. Using the ‘hard sphere’ approximation, where the ions are represented by spheres of a fixed radius, we derive four limiting models that each constrain the distances between constituent ions in different ways. We compare the lattice parameters predicted by these four models with experimental data from the Inorganic Crystal Structure Database (ICSD). For the fluorides, the maintenance of the AX bond length at the sum of the A and X radii gives the best approximation of the lattice parameter, leading to structures with widely separated BX<sub>6</sub> octahedra. For the heavier halides, a balance between forming an A site cavity of the correct size, and maintaining suitable anion-anion distances determines the lattice parameter. It is found that in many A<sub>2</sub>BX<sub>6</sub> compounds of heavier halides, the neighbouring octahedra show very significant anion-anion overlap, meaning that the commonly used description of these materials of having isolated BX<sub>6</sub> octahedra is misleading. We use the geometric models to derive formability criteria for vacancy ordered double perovskites. </p>

2020 ◽  
Author(s):  
Anjie Cheng ◽  
Chenyang Lyu ◽  
Tianyi Shi ◽  
Ziheng Wang ◽  
Robert Palgrave

<p>A geometric analysis of the cubic A<sub>2</sub>BX<sub>6</sub> structure commonly formed by metal halides is presented. Using the ‘hard sphere’ approximation, where the ions are represented by spheres of a fixed radius, we derive four limiting models that each constrain the distances between constituent ions in different ways. We compare the lattice parameters predicted by these four models with experimental data from the Inorganic Crystal Structure Database (ICSD). For the fluorides, the maintenance of the AX bond length at the sum of the A and X radii gives the best approximation of the lattice parameter, leading to structures with widely separated BX<sub>6</sub> octahedra. For the heavier halides, a balance between forming an A site cavity of the correct size, and maintaining suitable anion-anion distances determines the lattice parameter. It is found that in many A<sub>2</sub>BX<sub>6</sub> compounds of heavier halides, the neighbouring octahedra show very significant anion-anion overlap, meaning that the commonly used description of these materials of having isolated BX<sub>6</sub> octahedra is misleading. We use the geometric models to derive formability criteria for vacancy ordered double perovskites. </p>


2005 ◽  
Vol 61 (3) ◽  
pp. 296-303 ◽  
Author(s):  
R. de Gelder ◽  
A. Janner

The frequency distributions of monoclinic crystals as a function of the lattice-parameter ratios resemble the corresponding ones of orthorhombic crystals: an exponential component, with more or less pronounced sharp peaks, with in general the most important peak at the ratio value 1. In addition, the distribution as a function of the monoclinic angle β has a sharp peak at 90° and decreases sensibly at larger angles. Similar behavior is observed for the three triclinic angular parameters α, β and γ, with characteristic differences between the organic and metal-organic, bio-macromolecular and inorganic crystals, respectively. The general behavior observed for the hexagonal, tetragonal, orthorhombic, monoclinic and triclinic crystals {in the first part of this series [de Gelder & Janner (2005). Acta Cryst. B61, 287–295] and in the present case} is summarized and commented. The data involved represent 366 800 crystals, with lattice parameters taken from the Cambridge Structural Database, CSD (294 400 entries), the Protein Data Bank, PDB (18 800 entries), and the Inorganic Crystal Structure Database, ICSD (53 600 entries). A new general structural principle is suggested.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 747
Author(s):  
Christoph Meyer ◽  
Philipp Ksoll ◽  
Vladimir Roddatis ◽  
Vasily Moshnyaga

Two series of B-site ordered, double-perovskite A2CoMnO6 and A2NiMnO6 (A = La, Pr, Nd, Sm, Gd) epitaxial films with thickness d ~ 100 nm were grown on SrTiO3(111) substrates via metalorganic aerosol deposition. Polarization and temperature-dependent Raman spectroscopy were carried out in order to determine the spin-phonon coupling constant, λ, and the impact of the A-site cation radius on the phonon properties. The reduction of the A-site cation radius from La3+ down to Gd3+ systematically shifts the Raman modes to lower wavenumbers, and decreases the magnetization-induced softening of the Ag breathing mode, described by the spin-phonon coupling constant, λ, which changes from λ = 1.42 cm−1 (La2CoMnO6) and λ = 1.53 cm−1 (La2NiMnO6) down to λ = 0.58 cm−1 (Gd2CoMnO6) and λ = 0.44 cm−1 (Gd2NiMnO6). A similar effect of the A-cation radius was established for the c-lattice parameter and Curie temperature, TC, in this series of double-perovskite films. Our observations directly demonstrate a strong impact of the lattice structure on the ferromagnetic superexchange interaction in double perovskites. Moreover, the A2CoMnO6 and A2NiMnO6 series exhibit very similar behavior of spin-phonon coupling due to the only moderate difference of Co2+ and Ni2+ cation size.


2007 ◽  
Vol 63 (2) ◽  
pp. 257-269 ◽  
Author(s):  
S. C. Abrahams

Release 2006/1 of the Inorganic Crystal Structure Database contains 155 entries under space group R3. Atomic coordinate analysis of the first 81 structures, with 52 different structure types, in Part I [Abrahams (2006). Acta Cryst. B62, 26–41] identified a total of 18 new types that satisfy the structural criteria for ferroelectricity, five that are more likely to have or undergo a transition to 3m symmetry, 19 more likely to be or undergo a transition to nonpolar symmetry and ten with a lower property predictability. Coordinate analysis of the remaining 71 entries with 54 different structure types in Part II leads to 11 materials including Al4B6O15, PbTa3(PO4)(P2O7)3.5, the KCd4Ga5S12 family, the LiZnPO4 family, Ca3Nb1.95O8V0.05 and Mn4Ta2O9 as new candidates which satisfy the structural criteria, together with the three known ferroelectrics Na3MoO3F3, Pb2ScTaO6, and RbTi2(PO4)3 at 6.2 GPa. Two additional ferroelectric predictions are at a lower level of confidence. The analysis also reveals nine materials, two of which are isostructural, that more likely belong or are capable of undergoing a transition to crystal class 3m. There are 14 additional structure types which are more likely to be nonpolar or undergo a transition to nonpolarity, ten have reduced predictive properties, with a further nine for which the space group is expected to remain R3 over the full thermal stability range. The increasing use of methods for identifying overlooked inversion centers in structural determinations may be extended by using coordinate analysis for detecting additional commonly overlooked symmetry elements.


2015 ◽  
Vol 182 ◽  
pp. 227-239 ◽  
Author(s):  
Tae Ho Shin ◽  
Jae-Ha Myung ◽  
Maarten Verbraeken ◽  
Guntae Kim ◽  
John T. S. Irvine

A-site ordered PrBaMn2O5+δ was investigated as a potential cathode for CO2 electrolysis using a La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte. The A-site ordered layered double perovskite, PrBaMn2O5+δ, was found to enhance electrocatalytic activity for CO2 reduction on the cathode side since it supports mixed valent transition metal cations such as Mn, which could provide high electrical conductivity and maintain a large oxygen vacancy content, contributing to fast oxygen ion diffusion. It was found that during the oxidation of the reduced PrBaMn2O5+δ (O5 phase) to PrBaMn2O6−δ (O6 phase), a reversible oxygen switchover in the lattice takes place. In addition, here the successful CO2 electrolysis was measured in LSGM electrolyte with this novel oxide electrode. It was found that this PrBaMn2O5+δ, layered perovskite cathode exhibits a performance with a current density of 0.85 A cm−2 at 1.5 V and 850 °C and the electrochemical properties were also evaluated by impedance spectroscopy.


2018 ◽  
Vol 466 ◽  
pp. 133-137 ◽  
Author(s):  
Yanchun Hu ◽  
Tengyu Guo ◽  
Xianwei Wang ◽  
Yawen Cui ◽  
Weixia Li ◽  
...  

Author(s):  
Mariateresa Galizia ◽  
Alessandro Lo Faro ◽  
Cettina Santagati

In this paper we propose a multidisciplinary approach concerning the tower of Mongialino in Mineo (Sicily), which is a unique case in Sicily of a cylindrical tower with an inner cylindrical nucleus. The vestiges of the dungeon rise on a rock promontory that dominates the valley of Margi, a site that has great landscape and territorial value. The building is affected by important collapses and lesions, and urgently requires a safeguard intervention that requires a deep knowledge and understanding of the construction. The first step of this process is a suitable documentation and representation of the cylindrical shape and its towering position. The peculiarity of the object requires the integrated use of current technologies of surveying able to provide a metrically-accurate three-dimensional model. The second step is the critic reading of the technological, typological and material elements that constitutes the constructive apparatus of the building (masonry, ribs, ring-like vault), and the geometric analysis addressed at the virtual reconstruction of the original shape.


Sign in / Sign up

Export Citation Format

Share Document