scholarly journals Alkyl Halides as Both Hydride and Alkyl Sources in Catalytic Regioselective Reductive Olefin Hydroalkylation

Author(s):  
Xianxiao Chen ◽  
Weidong Rao ◽  
Tao Yang ◽  
Ming Joo Koh

Among the plethora of catalytic methods developed for hydrocarbofunctionalization of olefins to date, reactions that regioselectively install a functionalized alkyl unit at the 2-position of a terminal unactivated C=C bond to afford branched products are scarce. Here, we show that a Ni-based catalyst in conjunction with a stoichiometric reducing agent promote Markovnikov-selective hydroalkylation of unactivated alkenes tethered to a recyclable 8-aminoquinaldine directing auxiliary. These mild reductive processes employ readily available primary and secondary haloalkanes as both the hydride and alkyl donor, obviating the need for additional hydrosilane, acidic or basic additives. Reactions of alkenyl amides with ≥five-carbon chain length regioselectively afforded β-alkylated products through remote hydroalkylation, underscoring the fidelity of the catalytic process and the directing group's capability in stabilizing five-membered nickelacycle intermediates. The operationally simple protocol exhibits exceptional functional group tolerance and is amenable to the synthesis of bioactive molecules as well as regioconvergent transformations.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xianxiao Chen ◽  
Weidong Rao ◽  
Tao Yang ◽  
Ming Joo Koh

AbstractAmong the plethora of catalytic methods developed for hydrocarbofunctionalization of olefins to date, reactions that regioselectively install a functionalized alkyl unit at the 2-position of a terminal unactivated C=C bond to afford branched products are scarce. Here, we show that a Ni-based catalyst in conjunction with a stoichiometric reducing agent promote Markovnikov-selective hydroalkylation of unactivated alkenes tethered to a recyclable 8-aminoquinaldine directing auxiliary. These mild reductive processes employ readily available primary and secondary haloalkanes as both the hydride and alkyl donor. Reactions of alkenyl amides with ≥ five-carbon chain length regioselectively afforded β-alkylated products through remote hydroalkylation, underscoring the fidelity of the catalytic process and the directing group’s capability in stabilizing five-membered nickelacycle intermediates. The operationally simple protocol exhibits exceptional functional group tolerance and is amenable to the synthesis of bioactive molecules as well as regioconvergent transformations.


2020 ◽  
Author(s):  
Xianxiao Chen ◽  
Weidong Rao ◽  
Tao Yang ◽  
Ming Joo Koh

Among the plethora of catalytic methods developed for hydrocarbofunctionalization of olefins to date, reactions that regioselectively install a functionalized alkyl unit at the 2-position of a terminal unactivated C=C bond to afford branched products are scarce. Here, we show that a Ni-based catalyst in conjunction with a stoichiometric reducing agent promote Markovnikov-selective hydroalkylation of unactivated alkenes tethered to a recyclable 8-aminoquinaldine directing auxiliary. These mild reductive processes employ readily available primary and secondary haloalkanes as both the hydride and alkyl donor, obviating the need for additional hydrosilane, acidic or basic additives. Reactions of alkenyl amides with ≥five-carbon chain length regioselectively afforded β-alkylated products through remote hydroalkylation, underscoring the fidelity of the catalytic process and the directing group's capability in stabilizing five-membered nickelacycle intermediates. The operationally simple protocol exhibits exceptional functional group tolerance and is amenable to the synthesis of bioactive molecules as well as regioconvergent transformations.


2020 ◽  
Author(s):  
Xianxiao Chen ◽  
Weidong Rao ◽  
Tao Yang ◽  
Ming Joo Koh

Among the plethora of catalytic methods developed for hydrocarbofunctionalization of olefins to date, reactions that regioselectively install a functionalized alkyl unit at the 2-position of a terminal unactivated C=C bond to afford branched products are scarce. Here, we show that a Ni-based catalyst in conjunction with a stoichiometric reducing agent promote Markovnikov-selective hydroalkylation of unactivated alkenes tethered to a recyclable 8-aminoquinaldine directing auxiliary. These mild reductive processes employ readily available primary and secondary haloalkanes as both the hydride and alkyl donor, obviating the need for additional hydrosilane, acidic or basic additives. Reactions of alkenyl amides with ≥five-carbon chain length regioselectively afforded β-alkylated products through remote hydroalkylation, underscoring the fidelity of the catalytic process and the directing group's capability in stabilizing five-membered nickelacycle intermediates. The operationally simple protocol exhibits exceptional functional group tolerance and is amenable to the synthesis of bioactive molecules as well as regioconvergent transformations.


2004 ◽  
Vol 92 (1) ◽  
pp. 236-254 ◽  
Author(s):  
Kevin C. Daly ◽  
Geraldine A. Wright ◽  
Brian H. Smith

Behavioral studies of olfactory discrimination and stimulus generalization in many species indicate that the molecular features of monomolecular odorants are important for odor discrimination. Here we evaluate how features, such as carbon chain length and functional group, are represented in the first level of synaptic processing. We recorded antennal lobe ensemble responses in the moth Manduca sexta to repeated 100-ms pulses of monomolecular alcohols and ketones. Most units exhibited a significant change in spike rate in response to most odorants that outlasted the duration of the stimulus. Peristimulus data were then sampled over 780 ms for each pulse of all odorants. Factor analysis was used to assess whether there were groups of units with common response patterns. We found that factors identified and represented activity for clusters of units with common temporal response characteristics. These temporally patterned responses typically spanned 780 ms and were often dependent on carbon chain length and functional group. Furthermore, cross-correlation analysis frequently indicated significant coincident spiking even during spontaneous activity. However, this synchrony occurred mainly between units recorded on the same tetrode. In a final analysis, the Euclidean distance between odor responses was calculated for each pair of odorants using factors as dimensions. The distance between responses for any two odorants was maximized by ∼240 ms. This time course corresponded to the brief sequence of coordinated bursts across the recorded population. The distance during this period was also a function of systematic differences in molecular features. Results of this Euclidian analysis thus directly correlate to previous behavioral studies of stimulus generalization in M. sexta.


2016 ◽  
Vol 2 (6) ◽  
pp. 975-983 ◽  
Author(s):  
Nerea Abad Fernandez ◽  
Lucia Rodriguez-Freire ◽  
Manish Keswani ◽  
Reyes Sierra-Alvarez

The study provides insights into the effect of carbon chain length, functional group substitutions and chemical structure on sonochemical degradation of perfluoroalkyl and polyfluoroalkyl substances.


2021 ◽  
pp. 117119
Author(s):  
Mansoor Ul Hassan Shah ◽  
Ambavaram Vijaya Bhaskar Reddy ◽  
Suzana Yusup ◽  
Masahiro Goto ◽  
Muhammad Moniruzzaman

Sign in / Sign up

Export Citation Format

Share Document