scholarly journals Self-Limiting Electrospray Deposition on Polymer Templates

Author(s):  
Lin Lei ◽  
Arielle R. Gamboa ◽  
Christianna Kutznetsova ◽  
Sunshine Littlecreek ◽  
Jingren Wang ◽  
...  

<p>Electrospray deposition (ESD) applies a high voltage to liquids flowing through narrow capillaries to produce monodisperse generations of droplets down to hundreds of nanometers in diameter, each carrying a small amount of the delivered solute. This deposition method has been combined with insulated stencil masks for fabricating micropatterns by spraying solutions containing nanoparticles, polymers, or biomaterials. To optimize the fabrication process for micro-coatings, a self-limiting electrospray deposition (SLED) method has recently been developed. Here, we combine SLED with a pre-existing patterned polymer film to study SLED’s fundamental behavior in a bilayer geometry. SLED has been observed when glassy insulating materials are sprayed onto conductive substrates, where a thickness-limited film forms as charge accumulates and repels the arrival of additional charged droplets. In this study, polystyrene (PS), Parylene C, and SU-8 thin films of varying thickness on silicon are utilized as insulated spraying substrates. Polyvinylpyrrolidone (PVP), a thermoplastic polymer is sprayed below its glass transition temperature (T<sub>g</sub>) to investigate the SLED behavior on the pre-deposited insulating films. Furthermore, to examine the effects of in-plane confinement on the spray, a microhole array patterned onto the PS thin film by laser dewetting was sprayed with dyed PVP in the SLED mode. This was then extended to an unmasked electrode array showing that masked SLED and laser dewetting could be used to target microscale regions of conventionally patterned electronics.</p>

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lin Lei ◽  
Arielle R. Gamboa ◽  
Christianna Kuznetsova ◽  
Sunshine Littlecreek ◽  
Jingren Wang ◽  
...  

Abstract Electrospray deposition (ESD) applies a high voltage to liquids flowing through narrow capillaries to produce monodisperse generations of droplets down to hundreds of nanometers in diameter, each carrying a small amount of the delivered solute. This deposition method has been combined with insulated stencil masks for fabricating micropatterns by spraying solutions containing nanoparticles, polymers, or biomaterials. To optimize the fabrication process for micro-coatings, a self-limiting electrospray deposition (SLED) method has recently been developed. Here, we combine SLED with a pre-existing patterned polymer film to study SLED’s fundamental behavior in a bilayer geometry. SLED has been observed when glassy insulating materials are sprayed onto conductive substrates, where a thickness-limited film forms as charge accumulates and repels the arrival of additional charged droplets. In this study, polystyrene (PS), Parylene C, and SU-8 thin films of varying thickness on silicon are utilized as insulated spraying substrates. Polyvinylpyrrolidone (PVP), a thermoplastic polymer is sprayed below its glass transition temperature (Tg) to investigate the SLED behavior on the pre-deposited insulating films. Furthermore, to examine the effects of in-plane confinement on the spray, a microhole array patterned onto the PS thin film by laser dewetting was sprayed with dyed PVP in the SLED mode. This was then extended to an unmasked electrode array showing that masked SLED and laser dewetting could be used to target microscale regions of conventionally-patterned electronics.


2020 ◽  
Author(s):  
Lin Lei ◽  
Arielle R. Gamboa ◽  
Christianna Kutznetsova ◽  
Sunshine Littlecreek ◽  
Jingren Wang ◽  
...  

<p>Electrospray deposition (ESD) applies a high voltage to liquids flowing through narrow capillaries to produce monodisperse generations of droplets down to hundreds of nanometers in diameter, each carrying a small amount of the delivered solute. This deposition method has been combined with insulated stencil masks for fabricating micropatterns by spraying solutions containing nanoparticles, polymers, or biomaterials. To optimize the fabrication process for micro-coatings, a self-limiting electrospray deposition (SLED) method has recently been developed. Here, we combine SLED with a pre-existing patterned polymer film to study SLED’s fundamental behavior in a bilayer geometry. SLED has been observed when glassy insulating materials are sprayed onto conductive substrates, where a thickness-limited film forms as charge accumulates and repels the arrival of additional charged droplets. In this study, polystyrene (PS), Parylene C, and SU-8 thin films of varying thickness on silicon are utilized as insulated spraying substrates. Polyvinylpyrrolidone (PVP), a thermoplastic polymer is sprayed below its glass transition temperature (T<sub>g</sub>) to investigate the SLED behavior on the pre-deposited insulating films. Furthermore, to examine the effects of in-plane confinement on the spray, a microhole array patterned onto the PS thin film by laser dewetting was sprayed with dyed PVP in the SLED mode. This was then extended to an unmasked electrode array showing that masked SLED and laser dewetting could be used to target microscale regions of conventionally patterned electronics.</p>


2012 ◽  
Vol 166-167 ◽  
pp. 777-786 ◽  
Author(s):  
Je-Min Yoo ◽  
Asha Sharma ◽  
Prashant Tathireddy ◽  
Loren W. Rieth ◽  
Florian Solzbacher ◽  
...  

2012 ◽  
Vol 22 (10) ◽  
pp. 105036 ◽  
Author(s):  
Je-Min Yoo ◽  
Jong-In Song ◽  
Prashant Tathireddy ◽  
Florian Solzbacher ◽  
Loren W Rieth

2014 ◽  
Vol 24 (3) ◽  
pp. 035003 ◽  
Author(s):  
Xianzong Xie ◽  
Loren Rieth ◽  
Sandeep Negi ◽  
Rajmohan Bhandari ◽  
Ryan Caldwell ◽  
...  

2014 ◽  
Vol 11 (2) ◽  
pp. 026016 ◽  
Author(s):  
Xianzong Xie ◽  
Loren Rieth ◽  
Layne Williams ◽  
Sandeep Negi ◽  
Rajmohan Bhandari ◽  
...  

2013 ◽  
Vol 215 (1) ◽  
pp. 78-87 ◽  
Author(s):  
Je-Min Yoo ◽  
Sandeep Negi ◽  
Prashant Tathireddy ◽  
Florian Solzbacher ◽  
Jong-In Song ◽  
...  

2019 ◽  
Author(s):  
Grigori Guitchounts ◽  
David Cox

ABSTRACTA chief goal in neuroscience is to understand how neuronal activity relates to behavior, perception, and cognition. However, monitoring neuronal activity over long periods of time is technically challenging, and limited, in part, by the invasive nature of recording tools. While electrodes allow for recording in freely-behaving animals, they tend to be bulky and stiff, causing damage to the tissue they are implanted in. One solution to this invasiveness problem may be probes that are small enough to fly under the immune system’s radar. Carbon fiber (CF) electrodes are thinner and more flexible than typical metal or silicon electrodes, but the arrays described in previous reports had low channel counts and required time-consuming manual assembly. Here we report the design of an expanded-channel-count carbon fiber electrode array (CFEA) as well as a method for fast preparation of the recording sites using acid etching and electroplating with PEDOT-TFB, and demonstrate the ability of the 64-channel CFEA to record from rat visual cortex. We include designs for interfacing the system with micro-drives or flex-PCB cables for recording from multiple brain regions, as well as a facilitated method for coating CFs with the insulator Parylene-C. High-channel-count CFEAs may thus be an alternative to traditional microwire-based electrodes and a practical tool for exploring the neural code.


2014 ◽  
Vol 1621 ◽  
pp. 259-265
Author(s):  
Xianzong Xie ◽  
Loren W. Rieth ◽  
Rohit Sharma ◽  
Sandeep Negi ◽  
Rajmohan Bhandari ◽  
...  

ABSTRACTLong-term functionality and stability of neural interfaces with complex geometries is one of the major challenges for chronic clinic applications due to lack of effective encapsulation. We present an encapsulation method that combines atomic layer deposited Al2O3 and Parylene C for encapsulation of biomedical implantable devices, focusing on its application on Utah electrode array based neural interfaces. The alumina and Parylene C bi-layer encapsulated wired Utah electrode array showed relatively stable impedance during the 960 equivalent soaking days at 37 °C in phosphate buffered solution. For the bi-layer coated wireless neural interfaces, the power-up frequency was constantly ∼ 910 MHz and the RF signal strength was stably around -73 dBm during equivalent soaking time of 1044 days at 37 °C (still under soak testing).


1998 ◽  
Vol 118 (7-8) ◽  
pp. 759-766 ◽  
Author(s):  
Sanju Hiro ◽  
Haruhisa Fujii ◽  
Toshio Abe ◽  
Hironobu Nishimoto

Sign in / Sign up

Export Citation Format

Share Document