electrospray deposition
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 88)

H-INDEX

32
(FIVE YEARS 4)

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Quim Tarrés ◽  
Roberto Aguado ◽  
M. Àngels Pèlach ◽  
Pere Mutjé ◽  
Marc Delgado-Aguilar

While the potential of cellulose nanofibers to enhance the mechanical and barrier properties of paper is well-known, there are many uncertainties with respect to how to apply them. In this study, we use not only bulk addition of micro-/nanofibers and bar coating with oxidized nanofibers, but also a combination of these and, as a novel element, electrospray deposition of nanofiber dispersions. Characterization involved testing the strength of uncoated and coated paper sheets, their resistance to air flow, their Bendtsen roughness, and their apparent density, plus visualization of their surface and cross-sections by scanning electron microscopy. As expected, bulk addition to the unrefined pulp was sufficient to attain substantial strengthening, but this enhancement was limited to approximately 124%. Following this, surface addition by bar coating improved air resistance, but not strength, since, as applying nanocellulose at high consistency was technically unfeasible, this was performed several times with detrimental drying stages in between. However, replacing bar coating with electrospraying helped us overcome these apparent limitations, producing enhancements in both barrier and tensile properties. It is concluded that electrosprayed nanofibers, owing to their uniform deposition and favorable interactions, operate as an effective binder between fibers (and/or fines).


2021 ◽  
Author(s):  
Robert Green-Warren ◽  
Luc Bontoux ◽  
Noah McAllister ◽  
Dylan Kovacevich ◽  
Asaad Shaikh ◽  
...  

Electrospray deposition (ESD) is a versatile micro/nano coating technology that utilizes the competition between surface charge of a droplet and its surface tension to create monodisperse generations of micro/nano droplets. ESD can deposit uniform thin films by including dilute solutes in these droplets. One mode of ESD, self-limiting electrospray deposition (SLED), has been shown to exist when glassy polymers are sprayed in a volatile solvent below the polymer glass transition temperature (Tg). This leads to charge accumulation on the coating surface that slows the growth of the film thickness. Since solutes can be easily blended in dilute ESD solutions, we investigate the SLED limits of self-limiting and non-self-limiting solute blends. As a motivating application, we focus on mechanical properties of the film. Specifically, we blend self-limiting polystyrene (PS) and SU-8 epoxy resin with different non-self-limiting mechanical modifiers, such as plasticizers and curing agents. To characterize the resulting morphologies and mechanical properties, we employ scanning electron microscopy and nanoindentation of as received and smoothed films. The results illustrate the formation of composited polymers that exhibit self-limiting ability by SLED, depending on the interaction between the two components. Further, mechanical properties could be effectively fine-tuned within these compositional ranges. This signifies the 3D coating capabilities through SLED can be implemented incorporating additional functionalities and properties beyond the base matrix.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin Yeong Song ◽  
Jae Hee Oh ◽  
Dongwhi Choi ◽  
Sang Min Park

AbstractA patterned transparent electrode is a crucial component of state-of-the-art wearable devices and optoelectronic devices. However, most of the patterning methods using silver nanowires (AgNWs), which is one of the outstanding candidate materials for the transparent electrode, wasted a large amount of unused AgNWs during the patterning process. Here, we report a highly efficient patterning of AgNWs using electrospray deposition with grounded electrolyte solution (EDGE). During electrospray deposition, a patterned electrolyte solution collector attracted AgNWs by strong electrostatic attraction and selectively deposited them only on the patterned collector, minimizing AgNW deposited elsewhere. The enhanced patterning efficiency was verified through a comparison between the EDGE and conventional process by numerical simulation and experimental validation. As a result, despite the same electrospray deposition conditions for both cases except for the existence of the electrolyte solution collector, the coverage ratio of AgNWs fabricated by the EDGE process was at least six times higher than that of AgNWs produced by the conventional process. Furthermore, the EDGE process provided high design flexibility in terms of not only the material of the substrate, including a polymer and a ceramic but also the shape of the substrate, including a 2D flat and 3D curved surface. As an application of the EDGE process, a self-powered touch sensor exploiting the triboelectric effect was demonstrated. Thus, the EDGE process would be utilized in further application in wearable or implantable devices in the field of biomedicine, intelligent robots, and human–machine interface.


2021 ◽  
Author(s):  
Catherine Nachtigal ◽  
Dylan Kovacevich ◽  
Lin Lei ◽  
Jonathan Singer

Sign in / Sign up

Export Citation Format

Share Document