scholarly journals Investigating Electrode Calendering and its Impact on Electrochemical Performance by Means of a New Discrete Element Method Model: Towards a Digital Twin of Li-Ion Battery Manufacturing

Author(s):  
Alain Ngandjong ◽  
Teo Lombardo ◽  
Emiliano Primo ◽  
Mehdi Chouchane ◽  
Abbos Shodiev ◽  
...  

Lithium-ion battery (LIB) manufacturing optimization is crucial to reduce its CO2 fingerprint and cost, while improving their electrochemical performance. In this article, we present an experimentally validated calendering Discrete Element Method model for LiNi0.33Mn0.33Co0.33O2–based cathodes by considering explicitly both active material (AM) and carbon-binder domain (CBD). This model was coupled to a pre-existing Coarse-Grained Molecular Dynamics model describing the slurry equilibration and its drying and a 4D-resolved Finite Element Method model for predicting electrochemical performance. Our calendering model introduces important novelties versus the state of the art, such as the utilization of un-calendered electrode mesostructures resulting from validated simulations of the slurry and drying combined with the explicit consideration of the spatial distribution and interactions between AM and CBD particles, and its validation with both experimental micro-indentation and porosity vs. calendering pressure curves. The effect of calendering on the electrode mesostructure is analyzed in terms of pore size distribution, tortuosity and particles arrangement. In addition, the evolution of the macroscopic electrochemical behavior of the electrodes upon the degree of calendering is discussed, offering added insights into the links between the calendering pressure, the electrode mesostructure and its overall performance.<br>

2020 ◽  
Author(s):  
Alain Ngandjong ◽  
Teo Lombardo ◽  
Emiliano Primo ◽  
Mehdi Chouchane ◽  
Abbos Shodiev ◽  
...  

Lithium-ion battery (LIB) manufacturing optimization is crucial to reduce its CO2 fingerprint and cost, while improving their electrochemical performance. In this article, we present an experimentally validated calendering Discrete Element Method model for LiNi0.33Mn0.33Co0.33O2–based cathodes by considering explicitly both active material (AM) and carbon-binder domain (CBD). This model was coupled to a pre-existing Coarse-Grained Molecular Dynamics model describing the slurry equilibration and its drying and a 4D-resolved Finite Element Method model for predicting electrochemical performance. Our calendering model introduces important novelties versus the state of the art, such as the utilization of un-calendered electrode mesostructures resulting from validated simulations of the slurry and drying combined with the explicit consideration of the spatial distribution and interactions between AM and CBD particles, and its validation with both experimental micro-indentation and porosity vs. calendering pressure curves. The effect of calendering on the electrode mesostructure is analyzed in terms of pore size distribution, tortuosity and particles arrangement. In addition, the evolution of the macroscopic electrochemical behavior of the electrodes upon the degree of calendering is discussed, offering added insights into the links between the calendering pressure, the electrode mesostructure and its overall performance.<br>


2021 ◽  
Vol MA2021-01 (2) ◽  
pp. 175-175
Author(s):  
Alain C. Ngandjong ◽  
Teo Lombardo ◽  
Emiliano N. Primo ◽  
Mehdi Chouchane ◽  
Abbos Shodiev ◽  
...  

2020 ◽  
Vol 4 ◽  
pp. 100050
Author(s):  
Hideya Nakamura ◽  
Hiroharu Takimoto ◽  
Naoki Kishida ◽  
Shuji Ohsaki ◽  
Satoru Watano

2020 ◽  
Vol 200 ◽  
pp. 298-314
Author(s):  
J. Horabik ◽  
J. Wiącek ◽  
P. Parafiniuk ◽  
M. Bańda ◽  
R. Kobyłka ◽  
...  

2019 ◽  
Vol 349 ◽  
pp. 1-11 ◽  
Author(s):  
Clara Sangrós Giménez ◽  
Benedikt Finke ◽  
Carsten Schilde ◽  
Linus Froböse ◽  
Arno Kwade

2021 ◽  
Vol 144 (1) ◽  
Author(s):  
Le Van Sang ◽  
Akihiko Yano ◽  
Ai I. Osaka ◽  
Natsuko Sugimura ◽  
Hitoshi Washizu

Abstract The present study uses the smoothed particle hydrodynamics (SPH) and discrete element method (DEM) coupling to investigate influence of the hexagonal boron nitride (hBN) particles on friction of the elastic coarse-grained micronscale iron. The hBN lubricant particles significantly improve the friction performance of iron in various simulation behaviors. The particle size, the air/water background containing the particles, and its temperature result in reduction of the friction coefficient. The surface mending, the protective film, and the energy dissipation are the main mechanisms related to the friction reduction. Additionally, it is worthy to note that the static friction and the kinetic friction can be clearly observed by this elastic coarse-graining.


Sign in / Sign up

Export Citation Format

Share Document