point mutant
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 18)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 66 (5) ◽  
pp. 811-814
Author(s):  
D. A. Goryainova ◽  
A. Yu. Nikolaeva ◽  
M. V. Kryukova ◽  
L. E. Petrovskaya ◽  
D. A. Korzhenevsky ◽  
...  

2021 ◽  
Author(s):  
Laura Frazier ◽  
Bailey Lubinski ◽  
Tiffany Tang ◽  
Susan Daniel ◽  
Javier A. Jaimes ◽  
...  

The African continent is currently notable as a source of novel SARS-CoV-2 variants. The A.23 viral lineage, characterized by three spike mutations F157L, V367F and Q613H, was first identified in a Ugandan prison in July 2020, and then spilled into the general population adding additional spike mutations (R102I, L141F, E484K and P681R) to comprise lineage A.23.1 by September 2020, with this virus being designated a variant of interest (VOI) in Africa and with subsequent spread to 26 other countries. The P681R spike mutation of the A.23.1 VOI is of note as it increases the number of basic residues in the sub-optimal SARS-CoV-2 spike protein furin cleavage site; as such, this mutation may affect viral replication, transmissibility or pathogenic properties. Here, we performed assays using fluorogenic peptides mimicking the S1/S2 sequence from A.23.1 and observed significantly increased cleavability with furin, compared to sequences matching Wuhan-Hu1 S1/S2. We performed functional infectivity assays using pseudotyped MLV particles harboring SARS-CoV-2 spike proteins and observed an increase in transduction for A.23.1-pseudotyped particles in Vero-TMPRSS2 and Calu-3 cells, compared to Wuhan-Hu1, and a lowered infection in Vero E6 cells. However, these changes in infectivity were not reproduced in a P681R point mutant of Wuhan-Hu1 spike. Our findings suggest that while A.23.1 has increased furin-mediated cleavage linked to the P681R mutation, which may affect viral infection and transmissibility, this mutation needs to occur on the background of other spike protein changes to enable its functional consequences.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohamed Raef Smaoui ◽  
Hamdi Yahyaoui

AbstractThe interaction between the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein and the ACE2 enzyme is believed to be the entry point of the virus into various cells in the body, including the lungs, heart, liver, and kidneys. The current focus of several therapeutic design efforts explores attempts at affecting the binding potential between the two proteins to limit the activity of the virus and disease progression. In this work, we analyze the stability of the spike protein under all possible single-point mutations in the RBD and computationally explore mutations that can affect the binding with the ACE2 enzyme. We unravel the mutation landscape of the receptor region and assess the toxicity potential of single and multi-point mutations, generating insights for future vaccine efforts on mutations that might further stabilize the spike protein and increase its infectivity. We developed a tool, called SpikeMutator, to construct full atomic protein structures of the mutant spike proteins and shared a database of 3800 single-point mutant structures. We analyzed the recent 65,000 reported spike sequences across the globe and observed the emergence of stable multi-point mutant structures. Using the landscape, we searched through 7.5 million possible 2-point mutation combinations and report that the (R355D K424E) mutation produces one of the strongest spike proteins that therapeutic efforts should investigate for the sake of developing effective vaccines.


2021 ◽  
Author(s):  
Lynden S Voth ◽  
Joseph J O'Connor ◽  
Catherine M Kerr ◽  
Ethan Doerger ◽  
Nancy Schwarting ◽  
...  

All coronaviruses (CoVs) contain a macrodomain, also termed Mac1, in non-structural protein 3 (nsp3) which binds and hydrolyzes ADP-ribose covalently attached to proteins. Despite several reports demonstrating that Mac1 is a prominent virulence factor, there is still a limited understanding of its cellular roles during infection. Currently, most of the information regarding the role of CoV Mac1 during infection is based on a single point mutant of a highly conserved asparagine-to-alanine mutation, which is known to largely eliminate Mac1 ADP-ribosylhydrolase activity. To determine if Mac1 ADP-ribose binding separately contributes to CoV replication, we compared the replication of a murine hepatitis virus (MHV) Mac1 mutant predicted to dramatically reduce ADP-ribose binding, D1329A, to the previously mentioned asparagine mutant, N1347A. D1329A and N1347A both replicated poorly in bone-marrow derived macrophages (BMDMs), were inhibited by PARP enzymes, and were highly attenuated in vivo. However, D1329A was significantly more attenuated than N1347A in all cell lines tested that were susceptible to MHV infection. In addition, D1329A retained some ability to block IFN-β transcript accumulation compared to N1347A, indicating that these two mutants impacted distinct Mac1 functions. Mac1 mutants predicted to eliminate both binding and hydrolysis activities were unrecoverable, suggesting that the combined activities of Mac1 may be essential for MHV replication. We conclude that Mac1 has multiple roles in promoting the replication of MHV, and that these results provide further evidence that Mac1 could be a prominent target for anti-CoV therapeutics.


2021 ◽  
Author(s):  
Stacy A. Malaker ◽  
Nicholas M. Riley ◽  
D. Judy Shon ◽  
Kayvon Pedram ◽  
Venkatesh Krishnan ◽  
...  

AbstractMucin domains are densely O-glycosylated modular protein domains found in a wide variety of cell surface and secreted proteins. Mucin-domain glycoproteins are key players in a host of human diseases, especially cancer, but the scope of the mucinome remains poorly defined. Recently, we characterized a bacterial mucinase, StcE, and demonstrated that an inactive point mutant retains binding selectivity for mucins. In this work, we leveraged inactive StcE to selectively enrich and identify mucins from complex samples like cell lysate and crude ovarian cancer patient ascites fluid. Our enrichment strategy was further aided by an algorithm to assign confidence to mucin-domain glycoprotein identifications. This mucinomics platform facilitated detection of hundreds of glycopeptides from mucin domains and highly overlapping populations of mucin-domain glycoproteins from ovarian cancer patients. Ultimately, we demonstrate our mucinomics approach can reveal key molecular signatures of cancer from in vitro and ex vivo sources.


2020 ◽  
Vol 117 (50) ◽  
pp. 31871-31881 ◽  
Author(s):  
Marc Serulla ◽  
Gabriel Ichim ◽  
Filip Stojceski ◽  
Gianvito Grasso ◽  
Sergii Afonin ◽  
...  

TAT-RasGAP317–326 is a cell-penetrating peptide-based construct with anticancer and antimicrobial activities. This peptide kills a subset of cancer cells in a manner that does not involve known programmed cell death pathways. Here we have elucidated the mode of action allowing TAT-RasGAP317–326 to kill cells. This peptide binds and disrupts artificial membranes containing lipids typically enriched in the inner leaflet of the plasma membrane, such as phosphatidylinositol-bisphosphate (PIP2) and phosphatidylserine (PS). Decreasing the amounts of PIP2 in cells renders them more resistant to TAT-RasGAP317–326, while reducing the ability of cells to repair their plasma membrane makes them more sensitive to the peptide. The W317A TAT-RasGAP317–326 point mutant, known to have impaired killing activities, has reduced abilities to bind and permeabilize PIP2- and PS-containing membranes and to translocate through biomembranes, presumably because of a higher propensity to adopt an α-helical state. This work shows that TAT-RasGAP317–326 kills cells via a form of necrosis that relies on the physical disruption of the plasma membrane once the peptide targets specific phospholipids found on the cytosolic side of the plasma membrane.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shuntaro Chiba ◽  
Aki Tanabe ◽  
Makoto Nakakido ◽  
Yasushi Okuno ◽  
Kouhei Tsumoto ◽  
...  

Abstract The generation of a wide range of candidate antibodies is important for the successful development of drugs that simultaneously satisfy multiple requirements. To find cooperative mutations and increase the diversity of mutants, an in silico double-point mutation approach, in which 3D models of all possible double-point mutant/antigen complexes are constructed and evaluated using interaction analysis, was developed. Starting from an antibody with very high affinity, four double-point mutants were designed in silico. Two of the double-point mutants exhibited improved affinity or affinity comparable to that of the starting antibody. The successful identification of two active double-point mutants showed that a cooperative mutation could be found by utilizing information regarding the interactions. The individual single-point mutants of the two active double-point mutants showed decreased affinity or no expression. These results suggested that the two active double-point mutants cannot be obtained through the usual approach i.e. a combination of improved single-point mutants. In addition, a triple-point mutant, which combines the distantly located active double-point mutation and an active single-point mutation collaterally obtained in the process of the double-point mutation strategy, was designed. The triple-point mutant showed improved affinity. This finding suggested that the effects of distantly located mutations are independent and additive. The double-point mutation approach using the interaction analysis of 3D structures expands the design repertoire for mutants, and hopefully paves a way for the identification of cooperative multiple-point mutations.


Sign in / Sign up

Export Citation Format

Share Document