scholarly journals Ambipolar PEDOT-Pendant Tetrachlorinated Perylene Diimide for Symmetric Supercapacitors

Author(s):  
Mark Miltenburg ◽  
Nimrat Obhi ◽  
Bryony McAllister ◽  
Dwight Seferos

Pseudocapacitive polymers offer potential for higher energy densities than electrostatic double layer capacitive materials and lower cost than pseudocapacitive metal oxides. These polymers typically demonstrate good stability when storing positive charge but poor stability when storing negative charge. The power and energy densities of these materials is also limited when the operating voltage window is restricted to positive voltages. The development of polymers capable of stable positive and negative charge storage is necessary to allow a wider voltage window and create high performance polymer supercapacitors. Here we present a PEDOT-pendant tetrachlorinated perylene diimide polymer capable of storing positive and negative charge, which utilizes a donor-nodeacceptor architecture to prevent electronic interaction between positive and negative charge storing units. The polymer films show balanced charge storage and excellent stability in both positive and negative charge storage, retaining more than 80% of their capacitance over 1000 cycles. The films demonstrate moderate capacitances of 78.6 F g<sup>-1</sup> in the positive region and 73.1 F g<sup>-1</sup> in the negative region at 0.5 A g<sup>-1</sup>, as well as excellent rate capabilities in positive and negative charge storage regions of 87% and 56% at 20 A g<sup>-1</sup>, respectively. The polymer film was applied as both electrodes in a symmetric type III supercapacitor device with a gel polymer electrolyte, demonstrating a wide operating potential range of 2.2 V. These results demonstrate that the cycling stability of ambipolar polymers can be improved using a donor-node-acceptor polymer architecture with an extended π-conjugated donor unit. <br>

2020 ◽  
Author(s):  
Mark Miltenburg ◽  
Nimrat Obhi ◽  
Bryony McAllister ◽  
Dwight Seferos

Pseudocapacitive polymers offer potential for higher energy densities than electrostatic double layer capacitive materials and lower cost than pseudocapacitive metal oxides. These polymers typically demonstrate good stability when storing positive charge but poor stability when storing negative charge. The power and energy densities of these materials is also limited when the operating voltage window is restricted to positive voltages. The development of polymers capable of stable positive and negative charge storage is necessary to allow a wider voltage window and create high performance polymer supercapacitors. Here we present a PEDOT-pendant tetrachlorinated perylene diimide polymer capable of storing positive and negative charge, which utilizes a donor-nodeacceptor architecture to prevent electronic interaction between positive and negative charge storing units. The polymer films show balanced charge storage and excellent stability in both positive and negative charge storage, retaining more than 80% of their capacitance over 1000 cycles. The films demonstrate moderate capacitances of 78.6 F g<sup>-1</sup> in the positive region and 73.1 F g<sup>-1</sup> in the negative region at 0.5 A g<sup>-1</sup>, as well as excellent rate capabilities in positive and negative charge storage regions of 87% and 56% at 20 A g<sup>-1</sup>, respectively. The polymer film was applied as both electrodes in a symmetric type III supercapacitor device with a gel polymer electrolyte, demonstrating a wide operating potential range of 2.2 V. These results demonstrate that the cycling stability of ambipolar polymers can be improved using a donor-node-acceptor polymer architecture with an extended π-conjugated donor unit. <br>


Author(s):  
Sarika Jadhav ◽  
Ramchandra S. Kalubarme ◽  
Norihiro Suzuki ◽  
Chiaki Terashima ◽  
Bharat Kale ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 614
Author(s):  
Vo Pham Hoang Huy ◽  
Seongjoon So ◽  
Jaehyun Hur

Among the various types of polymer electrolytes, gel polymer electrolytes have been considered as promising electrolytes for high-performance lithium and non-lithium batteries. The introduction of inorganic fillers into the polymer-salt system of gel polymer electrolytes has emerged as an effective strategy to achieve high ionic conductivity and excellent interfacial contact with the electrode. In this review, the detailed roles of inorganic fillers in composite gel polymer electrolytes are presented based on their physical and electrochemical properties in lithium and non-lithium polymer batteries. First, we summarize the historical developments of gel polymer electrolytes. Then, a list of detailed fillers applied in gel polymer electrolytes is presented. Possible mechanisms of conductivity enhancement by the addition of inorganic fillers are discussed for each inorganic filler. Subsequently, inorganic filler/polymer composite electrolytes studied for use in various battery systems, including Li-, Na-, Mg-, and Zn-ion batteries, are discussed. Finally, the future perspectives and requirements of the current composite gel polymer electrolyte technologies are highlighted.


Author(s):  
Zhidong Liu ◽  
Xiaohang Wang ◽  
Zhiyuan Liu ◽  
Shuqing Zhang ◽  
Zichuan Lv ◽  
...  

2018 ◽  
Vol 2 (2) ◽  
pp. 357-360 ◽  
Author(s):  
Chunmei Xu ◽  
Haiyan Wang ◽  
Jiang Deng ◽  
Yong Wang

Coupling a porous electrode with methylene blue in a solid-state electrolyte resulted in high EDLC, wide operating voltage window, and enhanced faradaic pseudocapacitance.


Sign in / Sign up

Export Citation Format

Share Document