scholarly journals Ordered LiNi0.5Mn1.5O4 Cathode in Bis(fluorosulfonyl)imide-Based Ionic Liquid Electrolyte: Importance of the Cathode-Electrolyte Interphase

Author(s):  
Hyeon Jeong Lee ◽  
Zachary Brown ◽  
Ying Zhao ◽  
Jack Fawdon ◽  
Weixin Song ◽  
...  

<div><div><div><p>The high voltage (4.7 V vs. Li+ /Li) spinel lithium nickel manganese oxide (LiNi0.5 Mn1.5 O4 , LNMO) is a promising candidate for the next-generation of lithium ion batteries due to its high energy density, low cost and environmental impact. However, poor cycling performance at high cutoff potentials limits its commercialization. Herein, hollow structured LNMO is synergistically paired with an ionic liquid electrolyte, 1M lithium bis(fluorosulfonyl)imide (LiFSI) in N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (Pyr1,3 FSI) to achieve stable cycling performance and improved rate capability. The optimized cathode-electrolyte system exhibits extended cycling performance (>85% capacity retention after 300 cycles) and high rate performance (106.2mAhg–1 at 5C) even at an elevated temperature of 65 ◦C. X-ray photoelectron spectroscopy and spatially resolved x-ray fluorescence analyses confirm the formation of a robust, LiF-rich cathode electrolyte interphase. This study presents a comprehensive design strategy to improve the electrochemical performance of high-voltage cathode materials.</p></div></div></div>

2020 ◽  
Author(s):  
Hyeon Jeong Lee ◽  
Zachary Brown ◽  
Ying Zhao ◽  
Jack Fawdon ◽  
Weixin Song ◽  
...  

<div><div><div><p>The high voltage (4.7 V vs. Li+ /Li) spinel lithium nickel manganese oxide (LiNi0.5 Mn1.5 O4 , LNMO) is a promising candidate for the next-generation of lithium ion batteries due to its high energy density, low cost and environmental impact. However, poor cycling performance at high cutoff potentials limits its commercialization. Herein, hollow structured LNMO is synergistically paired with an ionic liquid electrolyte, 1M lithium bis(fluorosulfonyl)imide (LiFSI) in N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (Pyr1,3 FSI) to achieve stable cycling performance and improved rate capability. The optimized cathode-electrolyte system exhibits extended cycling performance (>85% capacity retention after 300 cycles) and high rate performance (106.2mAhg–1 at 5C) even at an elevated temperature of 65 ◦C. X-ray photoelectron spectroscopy and spatially resolved x-ray fluorescence analyses confirm the formation of a robust, LiF-rich cathode electrolyte interphase. This study presents a comprehensive design strategy to improve the electrochemical performance of high-voltage cathode materials.</p></div></div></div>


2021 ◽  
Author(s):  
Thushan Pathirana ◽  
Dmitrii Rakov ◽  
Fangfang Chen ◽  
Maria Forsyth ◽  
Robert Kerr ◽  
...  

<p>ABSTRACT </p><p>Cell formation of lithium-ion cells impacts the evolution of the solid electrolyte interphase (SEI) and the cell cycle stability. Lithium metal anodes are an important step in the development of high energy density batteries owing to the high theoretical specific capacity of lithium metal. However, most lithium metal battery research has used a conventional lithium-ion formation protocol; this is time consuming, costly and does not account for the different properties of the lithium metal electrode. Here, we have used a recently reported promising phosphonium bis(fluorosulfonyl)imide ionic liquid electrolyte coupled with an NMC622 high areal capacity cathode (>3.5 mAh/cm2) to investigate the effect of cell formation rates. A faster formation protocol comprised of a pulsed 1.25C current decreased the formation time by 56 % and gave a 38 % greater capacity retention after 50 cycles when compared to formation at C/20. Electrochemical impedance spectroscopy measurements showed that the fast formation gave rise to a lower-resistance SEI. Column-like lithium deposits with reduced porous lithium domains between the particles were observed using scanning electron microscope imaging. To underline the excellent performance of these high energy-density cells, a 56 % greater stack specific energy was achieved compared to the analogous graphite-based lithium-ion cell chemistries. </p>


2021 ◽  
Author(s):  
Thushan Pathirana ◽  
Dmitrii Rakov ◽  
Fangfang Chen ◽  
Maria Forsyth ◽  
Robert Kerr ◽  
...  

<p>ABSTRACT </p><p>Cell formation of lithium-ion cells impacts the evolution of the solid electrolyte interphase (SEI) and the cell cycle stability. Lithium metal anodes are an important step in the development of high energy density batteries owing to the high theoretical specific capacity of lithium metal. However, most lithium metal battery research has used a conventional lithium-ion formation protocol; this is time consuming, costly and does not account for the different properties of the lithium metal electrode. Here, we have used a recently reported promising phosphonium bis(fluorosulfonyl)imide ionic liquid electrolyte coupled with an NMC622 high areal capacity cathode (>3.5 mAh/cm2) to investigate the effect of cell formation rates. A faster formation protocol comprised of a pulsed 1.25C current decreased the formation time by 56 % and gave a 38 % greater capacity retention after 50 cycles when compared to formation at C/20. Electrochemical impedance spectroscopy measurements showed that the fast formation gave rise to a lower-resistance SEI. Column-like lithium deposits with reduced porous lithium domains between the particles were observed using scanning electron microscope imaging. To underline the excellent performance of these high energy-density cells, a 56 % greater stack specific energy was achieved compared to the analogous graphite-based lithium-ion cell chemistries. </p>


Ionics ◽  
2019 ◽  
Vol 25 (9) ◽  
pp. 4351-4360 ◽  
Author(s):  
Zhongliang Yu ◽  
Jiahe Zhang ◽  
Chunxian Xing ◽  
Lei Hu ◽  
Lili Wang ◽  
...  

2018 ◽  
Vol 283 ◽  
pp. 111-120 ◽  
Author(s):  
Fuxiao Liang ◽  
Jiali Yu ◽  
Jiahui Chen ◽  
Dong Wang ◽  
Chengdong Lin ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (88) ◽  
pp. 55702-55708 ◽  
Author(s):  
Duck-Jae You ◽  
Zhenxing Yin ◽  
Yong-keon Ahn ◽  
Seong-Hun Lee ◽  
Jeeyoung Yoo ◽  
...  

A bimodal redox-active ionic liquid electrolyte for high energy density supercapacitors was fabricated by the redox reaction of halide ions and size variation of ions.


2021 ◽  
pp. 132693
Author(s):  
Bharath Umesh ◽  
Purna Chandra Rath ◽  
Jagabandhu Patra ◽  
Rahmandhika Firdauzha Hary Hernandha ◽  
Subhasis Basu Majumder ◽  
...  

2021 ◽  
Vol 415 ◽  
pp. 128904
Author(s):  
Purna Chandra Rath ◽  
Yi-Wun Wang ◽  
Jagabandhu Patra ◽  
Bharath Umesh ◽  
Ting-Ju Yeh ◽  
...  

2020 ◽  
Author(s):  
Michele Fiore ◽  
Kevin Hurlbutt ◽  
Samuel Wheeler ◽  
Isaac Capone ◽  
Jack Fawdon ◽  
...  

<div><div><div><p>Potassium-ion batteries (KIB) are a promising complementary technology to lithium-ion batteries because of the comparative abundance and affordability of potassium. Currently, the most promising KIB chemistry consists of a potassium manganese hexacyanoferrate (KMF) cathode, a Prussian blue analog, and a graphite anode (723Whl−1 and 359Whkg−1 at 3.6V). No electrolyte has yet been formulated that is concurrently stable at the high operating potential of KMF (4.02V vs K+/K) and compatible with K+ intercalation into graphite, currently the most critical hurdle to adoption. Here we combine a KMF cathode and a graphite anode with a KFSI in Pyr1,3FSI ionic liquid electrolyte for the first time and show unprecedented performance. We use high-throughput techniques to optimize the KMF morphology for operation in this electrolyte system, achieving 119 mA h g−1 at 4 V vs K+/K and a coulombic efficiency >99.3%. In the same ionic liquid electrolyte graphite shows excellent electrochemical performance and we demonstrate reversible cycling by operando XRD. These results are a significant and essential step forward towards viable potassium-ion batteries.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document