scholarly journals Theoretical Study on Proton Diffusivity in Y-Doped BaZrO3 with Realistic Dopant Configurations

Author(s):  
Takeo Fujii ◽  
Kazuaki Toyoura ◽  
Tetsuya Uda ◽  
Shusuke Kasamatsu

We theoretically revisit the proton diffusivity in yttrium-doped barium zirconate (Y-doped BaZrO<sub>3</sub>) with realistic dopant configurations under processing conditions. In a recent study employing the replica exchange Monte Carlo method, the equilibrium Y configurations at typical sintering temperatures were shown to deviate from the random configuration assumed in earlier theoretical studies. In the present study, we took this observation into account and evaluated the effect of the Y configuration on the proton diffusivity. Using the master equation approach based on local diffusion barriers calculated from first principles, the proton diffusivities under realistic Y configurations were estimated to be higher than those in the random configuration. This is explained by the fact that realistic Y configurations have fewer trap sites with deep potential wells compared to the random configuration due to the isolation trend of Y dopants. In addition, the effects of proton-proton interaction and the abundance of preferential conduction pathways are discussed; it is found that both are relatively minor factors compared to the trap site effect in determining the dependence of the proton diffusivity on the Y configurations.<br>

2020 ◽  
Author(s):  
Takeo Fujii ◽  
Kazuaki Toyoura ◽  
Tetsuya Uda ◽  
Shusuke Kasamatsu

We theoretically revisit the proton diffusivity in yttrium-doped barium zirconate (Y-doped BaZrO<sub>3</sub>) with realistic dopant configurations under processing conditions. In a recent study employing the replica exchange Monte Carlo method, the equilibrium Y configurations at typical sintering temperatures were shown to deviate from the random configuration assumed in earlier theoretical studies. In the present study, we took this observation into account and evaluated the effect of the Y configuration on the proton diffusivity. Using the master equation approach based on local diffusion barriers calculated from first principles, the proton diffusivities under realistic Y configurations were estimated to be higher than those in the random configuration. This is explained by the fact that realistic Y configurations have fewer trap sites with deep potential wells compared to the random configuration due to the isolation trend of Y dopants. In addition, the effects of proton-proton interaction and the abundance of preferential conduction pathways are discussed; it is found that both are relatively minor factors compared to the trap site effect in determining the dependence of the proton diffusivity on the Y configurations.<br>


2020 ◽  
Author(s):  
Takeo Fujii ◽  
Kazuaki Toyoura ◽  
Tetsuya Uda ◽  
Shusuke Kasamatsu

We theoretically revisit the proton diffusivity in yttrium-doped barium zirconate (Y-doped BaZrO<sub>3</sub>) with realistic dopant configurations under processing conditions. In a recent study employing the replica exchange Monte Carlo method, the equilibrium Y configurations at typical sintering temperatures were shown to deviate from the random configuration assumed in earlier theoretical studies. In the present study, we took this observation into account and evaluated the effect of the Y configuration on the proton diffusivity. Using the master equation approach based on local diffusion barriers calculated from first principles, the proton diffusivities under realistic Y configurations were estimated to be higher than those in the random configuration. This is explained by the fact that realistic Y configurations have fewer trap sites with deep potential wells compared to the random configuration due to the isolation trend of Y dopants. In addition, the effects of proton-proton interaction and the abundance of preferential conduction pathways are discussed; it is found that both are relatively minor factors compared to the trap site effect in determining the dependence of the proton diffusivity on the Y configurations.<br>


2021 ◽  
Author(s):  
Takeo Fujii ◽  
Kazuaki Toyoura ◽  
Tetsuya Uda ◽  
Shusuke Kasamatsu

We theoretically revisit the proton diffusivity in yttrium-doped barium zirconate (Y-doped BaZrO<sub>3</sub>) with realistic dopant configurations under processing conditions. In a recent study employing the replica exchange Monte Carlo method, the equilibrium Y configurations at typical sintering temperatures were shown to deviate from the random configuration assumed in earlier theoretical studies. In the present study, we took this observation into account and evaluated the effect of the Y configuration on the proton diffusivity. Using the master equation approach based on local diffusion barriers calculated from first principles, the proton diffusivities under realistic Y configurations were estimated to be higher than those in the random configuration. This is explained by the fact that realistic Y configurations have fewer trap sites with deep potential wells compared to the random configuration due to the isolation trend of Y dopants. In addition, the effects of proton-proton interaction and the abundance of preferential conduction pathways are discussed; it is found that both are relatively minor factors compared to the trap site effect in determining the dependence of the proton diffusivity on the Y configurations.<br>


2021 ◽  
Author(s):  
Takeo Fujii ◽  
Kazuaki Toyoura ◽  
Tetsuya Uda ◽  
Shusuke Kasamatsu

We theoretically revisit the proton diffusivity in yttrium-doped barium zirconate (Y-doped BaZrO<sub>3</sub>) with realistic dopant configurations under processing conditions. In a recent study employing the replica exchange Monte Carlo method, the equilibrium Y configurations at typical sintering temperatures were shown to deviate from the random configuration assumed in earlier theoretical studies. In the present study, we took this observation into account and evaluated the effect of the Y configuration on the proton diffusivity. Using the master equation approach based on local diffusion barriers calculated from first principles, the proton diffusivities under realistic Y configurations were estimated to be higher than those in the random configuration. This is explained by the fact that realistic Y configurations have fewer trap sites with deep potential wells compared to the random configuration due to the isolation trend of Y dopants. In addition, the effects of proton-proton interaction and the abundance of preferential conduction pathways are discussed; it is found that both are relatively minor factors compared to the trap site effect in determining the dependence of the proton diffusivity on the Y configurations.<br>


Author(s):  
Sebastian Eisele ◽  
Fabian M. Draber ◽  
Steffen Grieshammer

First principles calculations and Monte Carlo simulations reveal the impact of defect interactions on the hydration of barium-zirconate.


Author(s):  
Wei-Jiun Su ◽  
Hsuan-Chen Lu

In this study, a dual-beam piezoelectric energy harvester is proposed. This harvester consists of a main beam and an auxiliary beam with a pair of magnets attached to couple their motions. The potential energy of the system is modeled to understand the influence of the potential wells on the dynamics of the harvester. It is noted that the alignment of the magnets significantly influences the potential wells. A theoretical model of the harvester is developed based on the Euler-Bernoulli beam theory. Frequency sweeps are conducted experimentally and numerically to study the dynamics of the harvester. It is shown that the dual-beam harvester can exhibit hardening effect with different configurations of magnet alignments in frequency sweeps. The performance of the harvester can be improved with proper placement of the magnets.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2091 ◽  
Author(s):  
Tie Yang ◽  
Liyu Hao ◽  
Rabah Khenata ◽  
Xiaotian Wang

In this work, we systematically studied the structural, electronic, magnetic, mechanical and thermodynamic properties of the fully compensated spin-gapless inverse Heusler Ti2MnAl compound under pressure strain condition by applying the first-principles calculation based on density functional theory and the quasi-harmonic Debye model. The obtained structural, electronic and magnetic behaviors without pressure are well consistent with previous studies. It is found that the spin-gapless characteristic is destroyed at 20 GPa and then restored with further increase in pressure. While, the fully compensated ferromagnetism shows a better resistance against the pressure up to 30 GPa and then becomes to non-magnetism at higher pressure. Tetragonal distortion has also been investigated and it is found the spin-gapless property is only destroyed when c/a is less than 1 at 95% volume. Three independent elastic constants and various moduli have been calculated and they all show increasing tendency with pressure increase. Additionally, the pressure effects on the thermodynamic properties under different temperature have been studied, including the normalized volume, thermal expansion coefficient, heat capacity at constant volume, Grüneisen constant and Debye temperature. Overall, this theoretical study presents a detailed analysis of the physical properties’ variation under strain condition from different aspects on Ti2MnAl and, thus, can provide a helpful reference for the future work and even inspire some new studies and lead to some insight on the application of this material.


2008 ◽  
Vol 1 ◽  
pp. 061401 ◽  
Author(s):  
Eiichi Okuno ◽  
Toshio Sakakibara ◽  
Shoichi Onda ◽  
Makoto Itoh ◽  
Tsuyoshi Uda

Sign in / Sign up

Export Citation Format

Share Document