scholarly journals Engender Persistent Organic Room-Temperature Phosphorescence by Trace Ingredient Incorporation

Author(s):  
Bingbing Ding ◽  
Liangwei Ma ◽  
Zizhao Huang ◽  
Xiang Ma ◽  
He Tian

<p>The trace impurities in pure organic phosphors were always ignored because the ultra-low content impurities were considered to hardly affect the luminescent properties. Evidences from corresponding reports and research have shown that impurities may greatly affect room temperature phosphorescence (RTP) in some crystalline compounds. To date, very few literatures have clearly study the role of impurities in RTP because of the difficulty in the separation and structure identification of impurities. Also no reports have focused on utilizing trace impurities to form new strategies for efficient RTP.</p> <p>For the first time, an impurity was isolated from 1-(4-bromophenyl)-1<i>H</i>-imidazole (1BBI) and structural identified, which was proved to be the key to RTP in 1BBI crystal. Neither purified impurity nor 1BBI matrix shown any detectable RTP. The impurity could light up the unusual ultralong RTP in matrix even at <b>0.01 mol%</b> content. Inspired by impurity/matrix phosphorescence, a trace-ingredient-mediated bicomponent strategy was introduced for high phosphorescence quantum yield (QY, up to 74.2%) and extralong lifetime (up to 430 ms).</p><p><b>Research Highlights of this work are including</b></p><p><b>1. </b><b>The study of impurities in organic luminescent materials, including phosphorescent materials, is rarely reported due to the great difficulty of separation, purification</b><b> and structure characterization. This work not only separated, purified and structure identified the trace impurity in the system but also confirmed the fact that the impurity engenders the RTP. And the corresponding mechanism was proposed as well.</b></p><p><b>2. </b><b>Inspired by the role of impurities in RTP, this work proposed an effective strategy for the design and preparation of persistent organic RTP based on active ingredient incorporation. Seven compounds were screened out to conduct the bicomponent RTP system and achieved bright RTP with high QY (up to 74.2%) and extra-long lifetime (up to 430 ms)) RTP with tunable colors.</b></p><p><b>3. </b><b>Combining the dual emission of blue fluorescence and yellow phosphorescence, a bicomponent system achieved a bright white-light emission, which shows its outstanding application potential.</b></p><p> The design concept and strategy of this work supplies an efficient approach to develop RTP by simply mixing the matrix with a trace amount of active ingredients. And the trace-ingredient-mediated bicomponent system is preferred for its high efficiency, color-tunable, low cost and easy to prepare properties, which will make important sense for facilely developing organic persistent RTP materials. This work will not only lead to a new understanding of persistent organic RTP but also develop a facile and effective strategy for RTP afterglow materials.<br></p>

2020 ◽  
Author(s):  
Bingbing Ding ◽  
Liangwei Ma ◽  
Zizhao Huang ◽  
Xiang Ma ◽  
He Tian

<p>The trace impurities in pure organic phosphors were always ignored because the ultra-low content impurities were considered to hardly affect the luminescent properties. Evidences from corresponding reports and research have shown that impurities may greatly affect room temperature phosphorescence (RTP) in some crystalline compounds. To date, very few literatures have clearly study the role of impurities in RTP because of the difficulty in the separation and structure identification of impurities. Also no reports have focused on utilizing trace impurities to form new strategies for efficient RTP.</p> <p>For the first time, an impurity was isolated from 1-(4-bromophenyl)-1<i>H</i>-imidazole (1BBI) and structural identified, which was proved to be the key to RTP in 1BBI crystal. Neither purified impurity nor 1BBI matrix shown any detectable RTP. The impurity could light up the unusual ultralong RTP in matrix even at <b>0.01 mol%</b> content. Inspired by impurity/matrix phosphorescence, a trace-ingredient-mediated bicomponent strategy was introduced for high phosphorescence quantum yield (QY, up to 74.2%) and extralong lifetime (up to 430 ms).</p><p><b>Research Highlights of this work are including</b></p><p><b>1. </b><b>The study of impurities in organic luminescent materials, including phosphorescent materials, is rarely reported due to the great difficulty of separation, purification</b><b> and structure characterization. This work not only separated, purified and structure identified the trace impurity in the system but also confirmed the fact that the impurity engenders the RTP. And the corresponding mechanism was proposed as well.</b></p><p><b>2. </b><b>Inspired by the role of impurities in RTP, this work proposed an effective strategy for the design and preparation of persistent organic RTP based on active ingredient incorporation. Seven compounds were screened out to conduct the bicomponent RTP system and achieved bright RTP with high QY (up to 74.2%) and extra-long lifetime (up to 430 ms)) RTP with tunable colors.</b></p><p><b>3. </b><b>Combining the dual emission of blue fluorescence and yellow phosphorescence, a bicomponent system achieved a bright white-light emission, which shows its outstanding application potential.</b></p><p> The design concept and strategy of this work supplies an efficient approach to develop RTP by simply mixing the matrix with a trace amount of active ingredients. And the trace-ingredient-mediated bicomponent system is preferred for its high efficiency, color-tunable, low cost and easy to prepare properties, which will make important sense for facilely developing organic persistent RTP materials. This work will not only lead to a new understanding of persistent organic RTP but also develop a facile and effective strategy for RTP afterglow materials.<br></p>


2019 ◽  
Author(s):  
Shuyuan Zheng ◽  
Taiping Hu ◽  
Xin Bin ◽  
Yunzhong Wang ◽  
Yuanping Yi ◽  
...  

Pure organic room temperature phosphorescence (RTP) and luminescence from nonconventional luminophores have gained increasing attention. However, it remains challenging to achieve efficient RTP from unorthodox luminophores, on account of the unsophisticated understanding of the emission mechanism. Here we propose a strategy to realize efficient RTP in nonconventional luminophores through incorporation of lone pairs together with clustering and effective electronic interactions. The former promotes spin-orbit coupling and boost the consequent intersystem crossing, whereas the latter narrows energy gaps and stabilizes the triplets, thus synergistically affording remarkable RTP. Experimental and theoretical results of urea and its derivatives verify the design rationale. Remarkably, RTP from thiourea solids with unprecedentedly high efficiency of up to 24.5% is obtained. Further control experiments testify the crucial role of through-space delocalization on the emission. These results would spur the future fabrication of nonconventional phosphors, and moreover should advance understanding of the underlying emission mechanism.<br>


2021 ◽  
Vol 7 (19) ◽  
pp. eabf9668
Author(s):  
Bingbing Ding ◽  
Liangwei Ma ◽  
Zizhao Huang ◽  
Xiang Ma ◽  
He Tian

Pure organic persistent room temperature phosphorescence (RTP) has shown great potential in information encryption, optoelectronic devices, and bio-applications. However, trace impurities are generated in synthesis, causing unpredictable effects on the luminescence properties. Here, an impurity is isolated from a pure organic RTP system and structurally characterized that caused an unusual ultralong RTP in matrix even at 0.01 mole percent content. Inspired by this effect, a series of compounds are screened out to form the bicomponent RTP system by the trace ingredient incorporation method. The RTP quantum yields reach as high as 74.2%, and the lifetimes reach up to 430 ms. Flexible application of trace ingredients to construct RTP materials has become an eye-catching strategy with high efficiency, economy, and potential for applications as well as easy preparation.


2017 ◽  
Vol 8 (3) ◽  
pp. 1909-1914 ◽  
Author(s):  
Bingjia Xu ◽  
Haozhong Wu ◽  
Junru Chen ◽  
Zhan Yang ◽  
Zhiyong Yang ◽  
...  

Two heavy atom-free white-light emitting luminophores exhibit fluorescence–phosphorescence dual-emission and are multi-stimuli responsive at room temperature.


2019 ◽  
Author(s):  
Shuyuan Zheng ◽  
Taiping Hu ◽  
Xin Bin ◽  
Yunzhong Wang ◽  
Yuanping Yi ◽  
...  

Pure organic room temperature phosphorescence (RTP) and luminescence from nonconventional luminophores have gained increasing attention. However, it remains challenging to achieve efficient RTP from unorthodox luminophores, on account of the unsophisticated understanding of the emission mechanism. Here we propose a strategy to realize efficient RTP in nonconventional luminophores through incorporation of lone pairs together with clustering and effective electronic interactions. The former promotes spin-orbit coupling and boost the consequent intersystem crossing, whereas the latter narrows energy gaps and stabilizes the triplets, thus synergistically affording remarkable RTP. Experimental and theoretical results of urea and its derivatives verify the design rationale. Remarkably, RTP from thiourea solids with unprecedentedly high efficiency of up to 24.5% is obtained. Further control experiments testify the crucial role of through-space delocalization on the emission. These results would spur the future fabrication of nonconventional phosphors, and moreover should advance understanding of the underlying emission mechanism.<br>


2021 ◽  
Vol 186 ◽  
pp. 109025
Author(s):  
João Humberto Dias Campos ◽  
Meiry Edivirges Alvarenga ◽  
Maykon Alves Lemes ◽  
José Antônio do Nascimento Neto ◽  
Freddy Fernandes Guimarães ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document