scholarly journals Role of Triplet States in the Photodynamics of Aniline

Author(s):  
Aleksandr Lykhin ◽  
Donald G. Truhlar ◽  
Laura Gagliardi

The dynamics of excited heteroaromatic molecules is a key to understanding the photoprotective properties of many biologically relevant chromophores that dissipate their excitation energy nonreactively and thereby prevent the detrimental effects of ultraviolet radiation. Despite their structural variability, most heteroaromatic compounds share a common feature of a repulsive <sup>1</sup>πσ* potential energy surface. This surface can lead to photoproducts, and it can also facilitate the population transfer back to the ground electronic state by means of a <sup>1</sup>πσ*/S<sub>0</sub> conical intersection. Here, we explore a hidden relaxation route involving the triplet electronic state of aniline, which has recently been discovered by means of time-selected photofragment translational spectroscopy [J. Chem. Phys. 2019, 151, 141101]. By using the recently available analytical gradients for multiconfiguration pair-density functional theory, it is now possible to locate the minimum energy crossing points between states of different spin and therefore compute the intersystem crossing rates with a multireference method, rather than with the less reliable single-reference methods. Using such calculations, we demonstrate that the population loss of aniline in the T<sub>1</sub>(<sup>3</sup>ππ<sup>*</sup>) state is dominated by C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub>→C<sub>6</sub>H<sub>5</sub>NH⸱ + H⸱ dissociation, and we explain the long nonradiative lifetimes of the T<sub>1</sub>(<sup>3</sup>ππ<sup>*</sup>) state at the excitation wavelengths of 294‑264 nm.

2021 ◽  
Author(s):  
Aleksandr Lykhin ◽  
Donald G. Truhlar ◽  
Laura Gagliardi

The dynamics of excited heteroaromatic molecules is a key to understanding the photoprotective properties of many biologically relevant chromophores that dissipate their excitation energy nonreactively and thereby prevent the detrimental effects of ultraviolet radiation. Despite their structural variability, most heteroaromatic compounds share a common feature of a repulsive <sup>1</sup>πσ* potential energy surface. This surface can lead to photoproducts, and it can also facilitate the population transfer back to the ground electronic state by means of a <sup>1</sup>πσ*/S<sub>0</sub> conical intersection. Here, we explore a hidden relaxation route involving the triplet electronic state of aniline, which has recently been discovered by means of time-selected photofragment translational spectroscopy [J. Chem. Phys. 2019, 151, 141101]. By using the recently available analytical gradients for multiconfiguration pair-density functional theory, it is now possible to locate the minimum energy crossing points between states of different spin and therefore compute the intersystem crossing rates with a multireference method, rather than with the less reliable single-reference methods. Using such calculations, we demonstrate that the population loss of aniline in the T<sub>1</sub>(<sup>3</sup>ππ<sup>*</sup>) state is dominated by C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub>→C<sub>6</sub>H<sub>5</sub>NH⸱ + H⸱ dissociation, and we explain the long nonradiative lifetimes of the T<sub>1</sub>(<sup>3</sup>ππ<sup>*</sup>) state at the excitation wavelengths of 294‑264 nm.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3638 ◽  
Author(s):  
Chantal Daniel ◽  
Christophe Gourlaouen

The electronic, structural and optical properties (including Spin–Orbit Coupling) of metal nitrosyl complexes [M(CN)5(NO)]2− (M = Fe, Ru or Os) are investigated by means of Density Functional Theory, TD-DFT and MS-CASPT2 based on an RASSCF wavefunction. The energy profiles connecting the N-bound (η1-N), O-bound (η1-O) and side-on (η2-NO) conformations have been computed at DFT level for the closed shell singlet electronic state. For each structure, the lowest singlet and triplet states have been optimized in order to gain insight into the energy profiles describing the conformational isomerism in excited states. The energetics of the three complexes are similar—with the N-bound structure being the most stable—with one exception, namely the triplet ground state of the O-bound isomer for the iron complex. The conformation isomerism is highly unfavorable in the S0 electronic state with the occurrence of two energy barriers higher than 2 eV. The lowest bands of the spectra are assigned to MLCTNO/LLCTNO transitions, with an increasing MLCT character going from iron to osmium. Two low-lying triplet states, T1 (MLCTNO/LLCTNO) and T2 (MLCTNO/ILNO), seem to control the lowest energy profile of the excited-state conformational isomerism.


2020 ◽  
Author(s):  
Denis Artiukhin ◽  
Patrick Eschenbach ◽  
Johannes Neugebauer

We present a computational analysis of the asymmetry in reaction center models of photosystem I, photosystem II, and bacteria from <i>Synechococcus elongatus</i>, <i>Thermococcus vulcanus</i>, and <i>Rhodobacter sphaeroides</i>, respectively. The recently developed FDE-diab methodology [J. Chem. Phys., 148 (2018), 214104] allowed us to effectively avoid the spin-density overdelocalization error characteristic for standard Kohn–Sham Density Functional Theory and to reliably calculate spin-density distributions and electronic couplings for a number of molecular systems ranging from dimeric models in vacuum to large protein including up to about 2000 atoms. The calculated spin densities showed a good agreement with available experimental results and were used to validate reaction center models reported in the literature. We demonstrated that the applied theoretical approach is very sensitive to changes in molecular structures and relative orientation of molecules. This makes FDE-diab a valuable tool for electronic structure calculations of large photosynthetic models effectively complementing the existing experimental techniques.


2018 ◽  
Author(s):  
Tim Gould

The GMTKN55 benchmarking protocol introduced by [Goerigk et al., Phys. Chem. Chem. Phys., 2017, 19, 32184] allows comprehensive analysis and ranking of density functional approximations with diverse chemical behaviours. But this comprehensiveness comes at a cost: GMTKN55's 1500 benchmarking values require energies for around 2500 systems to be calculated, making it a costly exercise. This manuscript introduces three subsets of GMTKN55, consisting of 30, 100 and 150 systems, as `diet' substitutes for the full database. The subsets are chosen via a stochastic genetic approach, and consequently can reproduce key results of the full GMTKN55 database, including ranking of approximations.


Chemistry ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 532-549
Author(s):  
Felix Plasser

Polycyclic aromatic hydrocarbons (PAH) are a prominent substance class with a variety of applications in molecular materials science. Their electronic properties crucially depend on the bond topology in ways that are often highly non-intuitive. Here, we study, using density functional theory, the triplet states of four biphenylene-derived PAHs finding dramatically different triplet excitation energies for closely related isomeric structures. These differences are rationalised using a qualitative description of Clar sextets and Baird quartets, quantified in terms of nucleus independent chemical shifts, and represented graphically through a recently developed method for visualising chemical shielding tensors (VIST). The results are further interpreted in terms of a 2D rigid rotor model of aromaticity and through an analysis of the natural transition orbitals involved in the triplet excited states showing good consistency between the different viewpoints. We believe that this work constitutes an important step in consolidating these varying viewpoints of electronically excited states.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 667
Author(s):  
Yanxia Lu ◽  
Qing Peng ◽  
Chenguang Liu

The α-decay of incorporated actinides continuously produces helium, resulting in helium accumulation and causing security concerns for nuclear waste forms. The helium mobility is a key issue affecting the accumulation and kinetics of helium. The energy barriers and migration pathways of helium in a potential high-level nuclear waste forms, La2Zr2O7 pyrochlore, have been investigated in this work using the climbing image nudged elastic band method with density functional theory. The minimum energy pathway for helium to migrate in La2Zr2O7 is identified as via La–La interstitial sites with a barrier of 0.46 eV. This work may offer a theoretical foundation for further prospective studies of nuclear waste forms.


Author(s):  
Riddhish Pandharkar ◽  
Matthew R. Hermes ◽  
Christopher J. Cramer ◽  
Donald G. Truhlar ◽  
Laura Gagliardi

Sign in / Sign up

Export Citation Format

Share Document