scholarly journals Air-Stable and Visible-Light-Active P-Type Organic Long-Persistent-Luminescence System by Using Organic Photoredox Catalyst

Author(s):  
Kazuya Jinnai ◽  
Ryota Kabe ◽  
Zesen Lin ◽  
Chihaya Adachi

<p>Organic long-persistent-luminescent (OLPL) materials that exhibit hour-long photoluminescence have advantages over inorganic materials, such as a sustainability, flexibility, and processability. The OLPL materials store the absorbed energy in an intermediate charge-separated state, but this charge-separated state is unstable to oxygen and does not exhibit persistent luminescence in air. The excitation wavelength of OLPL can be controlled by electron-donor and -acceptor materials, but previous materials require absorption mainly in the ultraviolet region.</p><p> Here, we show OLPL systems that exhibit a persistent luminescence in air and can be excited by a wavelength from 300-nm to 600-nm. By using cationic photoredox catalysts as an electron-accepting dopant, stable charge-separated states are generated by the hole-diffusion process, as opposed to previous OLPL systems that depend on electron diffusion. By using a hole-diffusion mechanism and reducing the energy level of the lowest unoccupied molecular orbital, the OLPL system becomes stable in air and can be excited by visible light. The addition of hole-trapping material increases the LPL duration..</p>

2021 ◽  
Author(s):  
Kazuya Jinnai ◽  
Ryota Kabe ◽  
Zesen Lin ◽  
Chihaya Adachi

Abstract Organic long-persistent-luminescent (OLPL) materials that exhibit hour-long photoluminescence have advantages over inorganic materials, such as a sustainability, flexibility, and processability. The OLPL materials store the absorbed energy in an intermediate charge-separated state, but this charge-separated state is unstable to oxygen and does not exhibit persistent luminescence in air. The excitation wavelength of OLPL can be controlled by electron-donor and -acceptor materials, but previous materials require absorption mainly in the ultraviolet region. Here, we show OLPL systems that exhibit a persistent luminescence in air and can be excited by a wavelength from 300-nm to 600-nm. By using cationic photoredox catalysts as an electron-accepting dopant, stable charge-separated states are generated by the hole-diffusion process, as opposed to previous OLPL systems that depend on electron diffusion. By using a hole-diffusion mechanism and reducing the energy level of the lowest unoccupied molecular orbital, the OLPL system becomes stable in air and can be excited by visible light. The addition of hole-trapping material increases the LPL duration.


2021 ◽  
Author(s):  
Kazuya Jinnai ◽  
Ryota Kabe ◽  
Zesen Lin ◽  
Chihaya Adachi

<p>Organic long-persistent-luminescent (OLPL) materials that exhibit hour-long photoluminescence have advantages over inorganic materials, such as a sustainability, flexibility, and processability. The OLPL materials store the absorbed energy in an intermediate charge-separated state, but this charge-separated state is unstable to oxygen and does not exhibit persistent luminescence in air. The excitation wavelength of OLPL can be controlled by electron-donor and -acceptor materials, but previous materials require absorption mainly in the ultraviolet region.</p><p> Here, we show OLPL systems that exhibit a persistent luminescence in air and can be excited by a wavelength from 300-nm to 600-nm. By using cationic photoredox catalysts as an electron-accepting dopant, stable charge-separated states are generated by the hole-diffusion process, as opposed to previous OLPL systems that depend on electron diffusion. By using a hole-diffusion mechanism and reducing the energy level of the lowest unoccupied molecular orbital, the OLPL system becomes stable in air and can be excited by visible light. The addition of hole-trapping material increases the LPL duration..</p>


2021 ◽  
Vol 17 ◽  
Author(s):  
Siyamak Shahab ◽  
Masoome Sheikhi ◽  
Mehrnoosh Khaleghian ◽  
Marina Murashko ◽  
Mahin Ahmadianarog ◽  
...  

: For the first time in the present study, the non-bonded interaction of the Coniine (C8H17N) with carbon monoxide (CO) was investigated by density functional theory (DFT/M062X/6-311+G*) in the gas phase and solvent water. The adsorption of the CO over C8H17N was affected on the electronic properties such as EHOMO, ELUMO, the energy gap between LUMO and HOMO, global hardness. Furthermore, chemical shift tensors and natural charge of the C8H17N and complex C8H17N/CO were determined and discussed. According to the natural bond orbital (NBO) results, the molecule C8H17N and CO play as both electron donor and acceptor at the complex C8H17N/CO in the gas phase and solvent water. On the other hand, the charge transfer is occurred between the bonding, antibonding or nonbonding orbitals in two molecules C8H17N and CO. We have also investigated the charge distribution for the complex C8H17N/CO by molecular electrostatic potential (MEP) calculations using the M062X/6-311+G* level of theory. The electronic spectra of the C8H17N and complex C8H17N/CO were calculated by time dependent DFT (TD-DFT) for investigation of the maximum wavelength value of the C8H17N before and after the non-bonded interaction with the CO in the gas phase and solvent water. Therefore, C8H17N can be used as strong absorbers for air purification and reduce environmental pollution.


2016 ◽  
Vol 13 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Rani P. Barkul ◽  
Farah-Naaz A. Shaikh ◽  
Sagar D. Delekar ◽  
Meghshyam K. Patil

2020 ◽  
Vol 1 (1) ◽  
pp. 30-36
Author(s):  
Shubha Jayachamarajapura Pranesh ◽  
Diwya Lanka

Background: Textile industries discharge harmful synthetic dyes to nearby water sources. These colour effluents should be treated before discharge to reduce the toxicity caused by synthetic colours. Objective: To synthesize visible light active superstructures to reduce water pollution caused by textile industries. Methods: We have successfully synthesized ZnO/Dy/NiO hybrid nanocomposites using waste curd as fuel by a simple combustion method. The obtained material was able to reduce recombination and enhanced the photocatalytic degradation of organic pollutants. The as-synthesized material was characterized by XRD, absorption spectroscopy, FESEM, EDAX, etc. The obtained hybrid nanostructure was used as a photocatalyst for the degradation of methylene blue under sunlight, UV light as well as in dark. Comparative experiments were carried out with a variation of catalytic load, pH, dye concentrations, etc. for a better understanding of the performance of the catalyst at various conditions. Results and Conclusion: The ternary compound shows wide range of absorption by expanding absorption band both in UV and visible regions. ZnO/Dy/NiO hybrid nanocomposites performed well and showed uniqueness in the activity uder visible light.


Author(s):  
Yuwei Zhang ◽  
Xiaoxiang Xu

Solid solution of LaTaON2 and BaTaO2N, i.e., La1-xBaxTaO1+yN2-y (0 ≤ x, y ≤ 1), have been investigated as visible-light-active photocatalysts for water oxidation reactions. A number of important parameters such...


Sign in / Sign up

Export Citation Format

Share Document