scholarly journals pH-Independent Heat Capacity Changes during Phosphorolysis Catalyzed by the Pyrimidine Nucleoside Phosphorylase from Geobacillus thermoglucosidasius

Author(s):  
Felix Kaspar ◽  
Darian S. Wolff ◽  
Peter Neubauer ◽  
Anke Kurreck ◽  
Vickery Arcus

Enzyme-catalyzed reactions sometimes display curvature in their Eyring plots in the absence of denaturation, indicative of a change in activation heat capacity. However, pH and (de)protonation effects on this phenomenon have remained unexplored. Herein, we report a kinetic characterization of the thermophilic pyrimidine nucleoside phosphorylase from <i>Geobacillus thermoglucosidasius</i> across a two-dimensional working space covering 35 °C and 3 pH units with two substrates displaying different pK<sub>a</sub> values. Our analysis revealed the presence of a measurable activation heat capacity change in this reaction system, which showed no significant dependence on medium pH or substrate charge. Our results further describe the remarkable effects of a single halide substitution which has a minor influence on the heat capacity change but conveys a significant kinetic effect by lowering the activation enthalpy, causing a >10-fold rate increase. Collectively, our results present an important piece in the understanding of enzymatic systems across multidimensional working spaces where the choice of reaction condition can affect rate, affinity and thermodynamic phenomena independently of one another.<br>

2021 ◽  
Author(s):  
Felix Kaspar ◽  
Darian S. Wolff ◽  
Peter Neubauer ◽  
Anke Kurreck ◽  
Vickery Arcus

Enzyme-catalyzed reactions sometimes display curvature in their Eyring plots in the absence of denaturation, indicative of a change in activation heat capacity. However, pH and (de)protonation effects on this phenomenon have remained unexplored. Herein, we report a kinetic characterization of the thermophilic pyrimidine nucleoside phosphorylase from <i>Geobacillus thermoglucosidasius</i> across a two-dimensional working space covering 35 °C and 3 pH units with two substrates displaying different pK<sub>a</sub> values. Our analysis revealed the presence of a measurable activation heat capacity change in this reaction system, which showed no significant dependence on medium pH or substrate charge. Our results further describe the remarkable effects of a single halide substitution which has a minor influence on the heat capacity change but conveys a significant kinetic effect by lowering the activation enthalpy, causing a >10-fold rate increase. Collectively, our results present an important piece in the understanding of enzymatic systems across multidimensional working spaces where the choice of reaction condition can affect rate, affinity and thermodynamic phenomena independently of one another.<br>


2017 ◽  
Author(s):  
Marc W van der Kamp ◽  
Erica J. Prentice ◽  
Kirsty L. Kraakmann ◽  
Michael Connolly ◽  
Adrian J. Mulholland ◽  
...  

AbstractHeat capacity changes are emerging as essential for explaining the temperature dependence of enzyme-catalysed reaction rates. This has important implications for enzyme kinetics, thermoadaptation and evolution, but the physical basis of these heat capacity changes is unknown. Here we show by a combination of experiment and simulation, for two quite distinct enzymes (dimeric ketosteroid isomerase and monomeric alpha-glucosidase), that the activation heat capacity change for the catalysed reaction can be predicted through atomistic molecular dynamics simulations. The simulations reveal subtle and surprising underlying dynamical changes: tightening of loops around the active site is observed as expected, but crucially, changes in energetic fluctuations are evident across the whole enzyme including important contributions from oligomeric neighbours and domains distal to the active site. This has general implications for understanding enzyme catalysis and demonstrating a direct connection between functionally important microscopic dynamics and macroscopically measurable quantities.


1999 ◽  
Vol 8 (7) ◽  
pp. 1500-1504 ◽  
Author(s):  
C. Nick Pace ◽  
Gerald R. Grimsley ◽  
Susan T. Thomas ◽  
George I. Makhatadze

2010 ◽  
Vol 375 (2) ◽  
pp. 165-169 ◽  
Author(s):  
Ken-ichi Amano ◽  
Daisuke Miyazaki ◽  
Liew Fong Fong ◽  
Paul Hilscher ◽  
Taro Sonobe

2020 ◽  
Author(s):  
Felix Kaspar ◽  
Peter Neubauer ◽  
Anke Kurreck

The poor solubility of many nucleoside and nucleobases in aqueous solution demands harsh reaction conditions (base, heat, cosolvent) in nucleoside phosphorylase-catalyzed processes to facilitate substrate loading beyond the low millimolar range. This, in turn, requires enzymes which withstand these conditions. Herein we report that the pyrimidine nucleoside phosphorylase from <i>Thermus thermophilus</i> is active over an exceptionally broad pH (4-10), temperature (up to 100 °C) and cosolvent space (up to 80% (v/v) non-aqueous medium) and displays tremendous stability under harsh reaction conditions with predicted total turnover numbers of more than 10<sup>6</sup> for various pyrimidine nucleosides. However, its use as a biocatalyst for preparative applications is critically limited due to its inhibition by nucleoside substrates at low concentrations, which is unprecedented among non-specific pyrimidine nucleoside phosphorylases.<br>


2012 ◽  
Vol 445 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Johan Vande Voorde ◽  
Federico Gago ◽  
Kristof Vrancken ◽  
Sandra Liekens ◽  
Jan Balzarini

In the present paper we demonstrate that the cytostatic and antiviral activity of pyrimidine nucleoside analogues is markedly decreased by a Mycoplasma hyorhinis infection and show that the phosphorolytic activity of the mycoplasmas is responsible for this. Since mycoplasmas are (i) an important cause of secondary infections in immunocompromised (e.g. HIV infected) patients and (ii) known to preferentially colonize tumour tissue in cancer patients, catabolic mycoplasma enzymes may compromise efficient chemotherapy of virus infections and cancer. In the genome of M. hyorhinis, a TP (thymidine phosphorylase) gene has been annotated. This gene was cloned, expressed in Escherichia coli and kinetically characterized. Whereas the mycoplasma TP efficiently catalyses the phosphorolysis of thymidine (Km=473 μM) and deoxyuridine (Km=578 μM), it prefers uridine (Km=92 μM) as a substrate. Our kinetic data and sequence analysis revealed that the annotated M. hyorhinis TP belongs to the NP (nucleoside phosphorylase)-II class PyNPs (pyrimidine NPs), and is distinct from the NP-II class TP and NP-I class UPs (uridine phosphorylases). M. hyorhinis PyNP also markedly differs from TP and UP in its substrate specificity towards therapeutic nucleoside analogues and susceptibility to clinically relevant drugs. Several kinetic properties of mycoplasma PyNP were explained by in silico analyses.


Sign in / Sign up

Export Citation Format

Share Document