Revision of the crystal structure of “‘bis glycine’ squarate” [Tyagi et al., RSC Adv., 2016, 6, 24565]

2018 ◽  
Author(s):  
Rüdiger W. Seidel

The crystal structure of “‘bis glycine’ squarate”, recently published in RSC Advances [Tyagi et al., RSC Adv. 2016, 6, 24565], is revised. Re-refinement of the structure against<br>the original X-ray diffraction data after correct placement of the donor hydrogen atoms proves that the compound is the previously reported diglycinium squarate [Aniola et al.,<br>New J. Chem. 2014, 38, 3556].

2018 ◽  
Author(s):  
Rüdiger W. Seidel

The crystal structure of “‘bis glycine’ squarate”, recently published in RSC Advances [Tyagi et al., RSC Adv. 2016, 6, 24565], is revised. Re-refinement of the structure against<br>the original X-ray diffraction data after correct placement of the donor hydrogen atoms proves that the compound is the previously reported diglycinium squarate [Aniola et al.,<br>New J. Chem. 2014, 38, 3556].


2004 ◽  
Vol 68 (5) ◽  
pp. 757-767 ◽  
Author(s):  
T. Mihajlović ◽  
H. Effenberger

AbstractHydrothermal synthesis produced the new compound SrCo2(AsO4)(AsO3OH)(OH)(H2O). The compound belongs to the tsumcorite group (natural and synthetic compounds with the general formula M(1)M(2)2(XO4)2(H2O,OH)2; M(1)1+,2+,3+ = Na, K, Rb, Ag, NH4, Ca, Pb, Bi, Tl; M(2)2+,3+ = Al, Mn3+, Fe3+, Co, Ni, Cu, Zn; and X5+,6+ = P, As, V, S, Se, Mo). It represents (1) the first Sr member, (2) the until now unknown [7]-coordination for the M(1) position, (3) the first proof of (partially) protonated arsenate groups in this group of compounds, and (4) a new structure variant.The crystal structure of the title compound was determined using single-crystal X-ray diffraction data. The compound is monoclinic, space group P21/a, with a = 9.139(2), b = 12.829(3), c = 7.522(2) Å, β = 114.33(3)°, V = 803.6(3) Å3, Z = 4 [wR2 = 0.065 for 3530 unique reflections]. The hydrogen atoms were located experimentally.


2019 ◽  
Vol 74 (1) ◽  
pp. 9-14
Author(s):  
Matthias Weil

AbstractThe crystal structure of struvite-type KMgAsO4(H2O)6 has been redetermined from single crystal X-ray diffraction data at room temperature. The previous structure model based on powder X-ray diffraction data was confirmed with higher precision and accuracy and with all hydrogen atoms located. KMgAsO4(H2O)6 undergoes a reversible phase transition of the continuous type at 263(2) K, changing the symmetry from orthorhombic to monoclinic. The corresponding Pnm21→P1121 symmetry reduction is of a translationengleiche type with index 2 and was monitored by temperature-dependent powder X-ray diffraction measurements. Such a phase transition is unprecedented for struvite-type compounds. The crystal structure of the monoclinic polymorph was determined from a two-domain crystal at 100 K. Except for the motion of one of the water molecules towards stronger hydrogen-bonding interactions, structural changes between the two polymorphs are small.


2015 ◽  
Vol 30 (4) ◽  
pp. 370-371
Author(s):  
J.A. Kaduk ◽  
K. Zhong ◽  
T.N. Blanton ◽  
S. Gates ◽  
T.G. Fawcett

The room-temperature crystal structure of levothyroxine sodium pentahydrate has been refined using synchrotron powder diffraction data. The compound crystallizes in space group P1 (#1) with a = 8.2489(4), b = 9.4868(5), c = 15.8298(6) Å, α = 84.1387(4), β = 83.1560(3), γ = 85.0482(3) deg, V = 1220.071(9) Å3, and Z = 2. Hydrogen atoms (missing from the previously-reported structure) were included.


2021 ◽  
pp. 1-6
Author(s):  
Joel W. Reid

Synchrotron powder diffraction data is presented for the monoclinic polymorph of dimethylarsinic acid, (CH3)2AsO(OH) (DMAV). Rietveld refinement with GSASII yielded lattice parameters of a = 15.9264(15) Å, b = 6.53999(8) Å, c = 11.3401(9) Å, and β = 125.8546(17)° (Z = 8, space group C2/c). The Rietveld-refined structure was compared with both a density functional theory (DFT)-optimized structure and the published, low-temperature single-crystal structure, and all three structures exhibited excellent agreement. The triclinic polymorph of DMAV was also DFT optimized with CRYSTAL17 to determine the positions of the hydrogen atoms. Monoclinic DMAV forms zigzag chains parallel to the b-axis with adjacent DMAV molecules connected by an O–H⋯O bond, whereas triclinic DMAV forms dimers connected by two O–H⋯O bonds.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


2020 ◽  
Vol 75 (8) ◽  
pp. 765-768
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mariya Dzevenko ◽  
Mykola Manyako ◽  
Roman Gladyshevskii

AbstractThe crystal structure of the phase Ce5AgxGe4−x (x = 0.1−1.08) has been determined using single-crystal X-ray diffraction data for Ce5Ag0.1Ge3.9. This phase is isotypic with Sm5Ge4: space group Pnma (No. 62), Pearson code oP36, Z = 4, a = 7.9632(2), b = 15.2693(5), c = 8.0803(2) Å; R1 = 0.0261, wR2 = 0.0460, 1428 F2 values and 48 variables. The two crystallographic positions 8d and 4c show Ge/Ag mixing, leading to a slight increase in the lattice parameters as compared to those of the pure binary compound Ce5Ge4.


2010 ◽  
Vol 95 (4) ◽  
pp. 655-658 ◽  
Author(s):  
S. Nazzareni ◽  
P. Comodi ◽  
L. Bindi ◽  
L. Dubrovinsky

2017 ◽  
Vol 81 (4) ◽  
pp. 917-922
Author(s):  
Peter Elliott

AbstractThe crystal structure of the copper aluminium phosphate mineral sieleckiite, Cu3Al4(PO4)2 (OH)12·2H2O, from the Mt Oxide copper mine, Queensland, Australia was solved from single-crystal X-ray diffraction data utilizing synchrotron radiation. Sieleckiite has monoclinic rather than triclinic symmetry as previously reported and is space group C2/m with unit-cell parameters a = 11.711(2), b = 6.9233(14), c = 9.828(2) Å, β = 92.88(3)°, V = 795.8(3) Å3and Z = 2. The crystal structure, which has been refined to R1 = 0.0456 on the basis of 1186 unique reflections with Fo > 4σF, is a framework of corner-, edge- and face- sharing Cu and Al octahedra and PO4 tetrahedra.


Sign in / Sign up

Export Citation Format

Share Document